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Parallel Matrix Algorithms and Applications (PMAA’18)

Dear participants,

Welcome to the 10th International Workshop on Parallel Matrix Algorithms and Applications
(PMAA18)! The workshop co-chairs are happy to host this international conference here
at ETH Zurich.

The PMAA workshop series aims to be a forum for an exchange of ideas, insights and ex-
periences in different areas of parallel computing in which matrix algorithms are employed.
The workshop will bring together experts and practitioners from diverse disciplines with a
common interest in matrix computation.

The PMAA workshop series started in 2000 in Neuchâtel on the initiative of Erricos Kon-
toghiorghes as a tiny workshop. It grew and stabilized over the years. Two more workshops
took place in Neuchâtel (2002, 2008), other venues were Marseille (2004), Rennes (2006),
Basel (2010), London (2012), Lugano (2014), and Bordeaux (2016).

The PMAA’18 program consists of 4 plenary talks, 15 minisymposia sessions and 6 ses-
sions of contributed talks. Altogether, there are around 90 talks.

The co-chairs tried hard to provide a balanced and stimulating programme that will appeal
to the diverse interests of the participants. The local organizing committee hopes that the
conference venue will provide the appropriate environment to enhance your contacts and
to establish new ones. The conference is a collective effort of many individuals. The co-
chairs, the scientific programme committee, and the local organizing committee have all
contributed substantially to the organization of the workshop.

Peer reviewed papers presented at PMAA’18 will be considered for publication in a special
issue of Elsevier’s journal ”Parallel Computing”.

We all hope that you enjoy the workshop and your stay in Zurich.

The conference co-chairs:
Peter Arbenz (Switzerland)
Rolf Krause (USI Lugano)
Daniel Kressner (EPF Lausanne)
Olaf Schenk (USI Lugano)

The local organizers:
Peter Arbenz (ETH Zurich)
Daniel Hupp (ETH Zurich)

The special issue editors:
Olaf Schenk (USI Lugano), managing editor
Luc Giraud (Inria Bordeaux)
Wim Vanroose (University of Antwerp)
Peter Arbenz (ETH Zurich)
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Schedule Overview
All lectures take place at CAB ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland.

Tuesday, 26th June 2018

05:00 PM - 08:00 PM Welcome Reception and Registration (CAB G Floor)

Wednesday, 27th June 2018

08:15 AM - 08:45 AM Registration (CAB G 11)

CAB G 11 CAB G 61 CAB G 51
08:45 AM - 09:00 AM Opening
09:00 AM - 09:45 AM IP 1.1

Scalable Eigensolver with
Applications in Computa-
tional Physics and Chem-
istry (Chao Yang)

09:45 AM - 10:15 AM Coffee Break
10:15 AM - 12:15 PM MS 1.2.A

Efficient dense eigen-
solvers - Methods and
applications I

MS 1.2.B
Scalable communication-
reducing Krylov subspace
methods

MS 1.2.C
High performance accu-
rate computing I

12:15 PM - 01:45 PM Lunch
01:45 PM - 03:45 PM MS 1.3.A

Efficient dense eigen-
solvers - Methods and
applications II

MS 1.3.B
Krylov and regularization
methods for large scale in-
verse problems

MS 1.3.C
High performance accu-
rate computing II

03:45 PM - 04:15 PM Coffee Break
04:15 PM - 06:15 PM CP 1.4.A

Approximate and sparse
factorizations

CP 1.4.B
Multigrid and miscella-
neous

CP 1.4.C
Splitting methods

Thursday, 28th June 2018

CAB G 11 CAB G 61 CAB G 51
08:50 AM - 09:00 AM Notes from the organizers
09:00 AM - 09:45 AM IP 2.1

Domain Decomposition
Methods: Theory and
Applications (Frederic
Nataf)

09:45 AM - 10:15 AM Coffee Break
10:45 AM - 12:15 PM MS 2.2.A

Parallel eigenvalue solvers
for large scale problems I

MS 2.2.B
Parallelization aspects of
SVD and EVD computa-
tions I

MS 2.2.C
Task-based programming
for scientific computing I

12:15 PM - 01:45 PM Lunch
01:45 PM - 03:45 PM MS 2.3.A

Parallel eigenvalue solvers
for large scale problems II

MS 2.3.B
Parallelization aspects of
SVD and EVD computa-
tions II

MS 2.3.C
Task-based programming
for scientific computing II

03:45 PM - 04:15 PM Coffee Break
04:15 PM - 05:00 PM IP 2.4

Scalable Tensor Algo-
rithms for Scientific Com-
puting (Edgar Solomonik)

06:30 PM - 10:00 PM Conference dinner
IV
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Friday, 29th June 2018

CAB G 11 CAB G 61 CAB G 51
08:45 AM - 10:45 AM CP 3.1.A

Parallel and domain de-
composition linear system
solvers

CP 3.1.B
Krylov space methods

CP 3.1.C
Mixed precision and li-
braries

10:45 AM - 11:15 AM Coffee Break
11:15 AM - 01:15 PM MS 3.2.A

Recent advances in paral-
lel sparse direct solvers

MS 3.2.B
Parallel-in-time methods
for HPC

MS 3.2.C
Resilience in scientific
computing

01:15 PM - 02:15 PM Lunch on Site
02:15 PM - 03:00 PM IP 3.3

Does Machine Learning
Need the Power of Itera-
tive Methods for the SVD?
(Andreas Stathopoulos)

03:00 AM - 03:10 AM Closing

Social Events

• The coffee breaks will take place on the G-floor of the CAB building (see map on page VII).

• Welcome Reception (Tuesday 26th June, 5:00pm). The reception is open to all registrants. It will take place
at the workshop venue in front of the lecture halls. The welcome reception gives you the opportunity to meet
the other workshop attendees. It will be the first official event of the conference.

• Lunches are organised. On Wednesday and Thursday, the participants get a voucher for a lunch at the
students’ mensa (Polymensa). On Friday, there is a lunch on site.

• Conference Dinner (Thursday 28th June, 6:30pm). The conference dinner will take place in the restaurant
of Hotel Uto Kulm (8143 Uetliberg / Zürich). The conference dinner is included in the conference registration
fee. There is a fee for accompanying persons.

You must have your conference badge in order to attend the conference dinner.

V
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Important Locations

Conference Building: CAB Building, Universitätstrasse 6, 8092 Zürich

Conference Dinner: Hotel-Restaurant Uto Kulm, 8143 Uetliberg / Zürich

Directions
• From conference building to Zürich main station: Either walk (10-15 min) or take trams 10 or 6 to the main

station.

• From Zürich main station to Uetliberg: Take the S10 train at the underground station on track 21/22 in
direction Uetliberg. The train runs every half-hour at 17:35 and 18:05 and takes 27 minutes to get to the
Uetliberg.

From the final station at Uetliberg, there is a 7-minutes walk to the restaurant.

VI
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Plenary Talks (in chronological order)

Wednesday, 27.06.2018 9:00 AM - 9:45 AM Location: CAB G 11 Plenary talk 1.1

Scalable Eigensolver with Applications in Computational Physics and Chemistry

Speaker: Chao Yang Chair: Olaf Schenk

Solving the quantum many-body problem efficiently and accurately is one of the biggest challenges in computa-
tional physics and chemistry. There are broadly two approaches to seeking an approximate solution to this high-
dimensional eigenvalue problem. One relies on projecting the many-body Hamiltonian onto a carefully chosen
subspace of many-body basis functions. The other relies on constructing an effective mean-field model to capture
the essential many-body physics that governs the interaction among different particles. These approaches yield
algebraic eigenvalue problems that have different characteristics. Developing efficient computational schemes to
tackle these problems on massively parallel computers requires choosing appropriate data structures to repre-
sent both the discretized Hamiltonian and the eigenvector to be computed, mapping such data structures onto a
distribute memory multi-core processor grid, exploiting multiple threads within a computational node and improv-
ing the scalability of the computation by generating multiple levels of concurrency and reducing communication
overhead. In this talk, I will give an overview on recent progress in these areas and point out the remaining
challenges.

Thursday, 28.06.2018 9:00 AM - 9:45 AM Location: CAB G 11 Plenary talk 2.1

Domain Decomposition Methods: Theory and Applications

Speaker: Frederic Nataf Chair: Rolf Krause

Domain decomposition methods are a popular way to solve large linear systems on parallel architectures. These
methods are based on a divide/conquer strategy. At each step of the algorithm, a problem is solved concurrently
in each subdomain and then interfaces data are exchanged between neighboring subdomains. These are coarse
grain algorithms since there are based on local volume computation and only surface data movements. Thanks to
their very good ratio local computations/data movement, they are thus naturally well adapted to modern computer
architectures. But, the original Schwarz method is slow. When implemented with a minimal overlap, it amounts
to a block Jacobi method. Its convergence rate can be improved by using more generous overlaps and modi-
fying the local blocks. In order to reach scalability, when the number of subdomains is large, a second level is
introduced. At each step of the algorithm, a coarse problem with one or few unknowns per subdomain is used to
further coordinate the solution between the subdomains globally. Theoretical results and numerical investigations
(over a billion unknowns) for porous media flows, linear elasticity equations confirm robustness with respect to
heterogeneous coefficients, automatic (non regular) partitions into subdomains and nearly incompressible behav-
ior. Numerical results for large scale harmonic wave propagation phenomena will be shown. These results are
obtained via an implementation in a Domain Specific Language devoted to the finite element method.

Thursday, 28.06.2018 04:15 PM - 05:00 PM Location: CAB G 11 Plenary talk 2.4

Scalable Tensor Algorithms for Scientific Computing

Speaker: Edgar Solomonik Chair: Daniel Kressner

Matrix and tensor eigenvalue computations consist of sequences of rectangular QR factorization and (sparse)
tensor contractions (matrix products). We present results in improving the communication cost of these build-
ing blocks and show that they are optimal with respect to lower bounds. These algorithmic techniques show
performance improvement across a range of parallel architectures. We make available distributed-memory imple-
mentations of these sparse and dense tensor algebra routines via the Cyclops library. We highlight the application
of this C++/Python library to high-accuracy chemistry, quantum circuit simulation, and graph analysis.

1
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Friday, 29.06.2018 02:15 PM - 03:00 PM Location: CAB G 11 Plenary talk 3.3

Does Machine Learning Need the Power of Iterative Methods for the SVD?

Speaker: Andreas Stathopoulos Chair: Peter Arbenz

Machine learning has emerged as one of the primary clients for large scale singular value calculations. Ap-
plications include clustering, recommendation systems, factor models in econometrics, and large-scale kernel
methods. The matrices can be very large, although nonzero sparsity may not always be present. In some cases,
one or two largest or smallest singular triplets are needed, while in other cases, a low rank approximation to the
matrix is needed. One particular difference of these applications from traditional PDE applications is that low
accuracy (typically 1-2 relative digits) is sufficient. To solve the SVD problem on large matrices, practitioners have
traditionally turned to iterative methods such as Lanczos bidiagonalization or the restarted and preconditioned
variants based on Davidson and LOBPCG. But for the specific requirements in machine learning, two different
classes of methods are becoming increasingly popular. One class is the randomized SVD methods which fo-
cuses on choosing an appropriately sized initial space which with minimal iterations gives the desired space. The
second class is streaming methods, where the matrix is accessed in its entirety but only once. In this talk we
address the question of what problems are best suited for what type of methods, and present a unified view of
randomized and iterative methods that is helpful both for developing and for using SVD software.

2



Wednesday, 27.06.2018 10:15 AM - 12:15 PM Parallel Session 1.2.

Parallel Sessions (in chronological order)

Wednesday, 27.06.2018 10:15 AM - 12:15 PM Parallel Session 1.2.

MS 1.2.A CAB G 11 EFFICIENT DENSE EIGENSOLVERS - METHODS AND AP-
PLICATIONS I

Chair: T. Huckle

#1: Efficient reduction of dense HPD generalized eigenproblems to standard form
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Valeriy Manin
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bruno Lang

We present an efficient approach to reduce a generalized eigenproblem AC = BCΛ to a standard eigenproblem
ÃC̃ = C̃Λ. Here A and B are hermitian and hermitian positive-definite, resp., matrices of size N×N. Λ is a K×K
diagonal matrix of the desired eigenvalues with K ≤ N, and C is an N×K matrix of corresponding eigenvectors.
We proceed with the reduction as follows:

[1] B⇒UHU (Cholesky decomposition of B; U is upper triangular, and UH denotes the conjugate transpose of
U)

[2] Optional: U ⇒U−1 (triangular matrix inversion)
[3] A⇒ Ã =U−HAU−1

[4] Solve the standard hermitian eigenproblem ÃC̃ = C̃Λ for C̃ and Λ

[5] C =U−1Λ̃ (back-transformation of the eigenvectors)
We concentrate on steps 3 and 5 and present highly scalable routines to implement matrix multiplications based
on Cannon’s algorithm. We show that our approach provides significantly better performance than the existing
functions.
#2: Efficient Transformation of the generalized Eigenproblem with symmetric banded matrices to a
banded standard Eigenproblem
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Michael Rippl
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The solution of symmetric eigenproblems plays a key role in many computational simulations. Generalized eigen-
problems are transformed to a standard problem. This transformation has the drawback that for banded matrices
in the generalized eigenproblem the banded structure is not preserved. The matrix of the standard eigenproblem
will generally be a full matrix. We followed the ideas of the Group of Lang (University of Wuppertal) who modified
Crawford’s algorithm and implemented a procedure for small bandwidth to the ELPA project. By keeping the
banded structure we save one reduction step on the matrix and one backtransformation step for the eigenvectors.
This provides a good speedup compared to the standard tranformation procedure with Cholesky factorization.
#3: Communication-Avoiding approaches of dense Eigenvalue / SVD problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toshiyuki Imamura
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For dense SEVP and SVD, the three types- of transformations based on the Householder transformation; tri-
diagonalization, bi-diagonalization, and reduction to a Hessenberg form, are expensing tremendous commu-
nication cost in massively parallel processing. The communication avoiding (CA) and communication hiding
(CH) approaches proposed for Householder tridiagonalization offer the significant cost reduction by removing
80% of ‘the number of collective communications (startup overhead).’ It reaches 15 to 20% of For dense SEVP
and SVD, the three types- of transformations based on the Householder transformation; tri-diagonalization, bi-
diagonalization, and reduction to a Hessenberg form, are expensing tremendous communication cost in massively
parallel processing. The communication avoiding (CA) and communication hiding (CH) approaches proposed for
Householder tridiagonalization offer the significant cost reduction by removing 80% of ‘the number of collective
communications (startup overhead).’ It reaches 15 to 20% of the total computation time on a large scale par-
allel system such as K computer. For dense SEVP and SVD, the three types- of transformations based on the
Householder transformation; tri-diagonalization, bi-diagonalization, and reduction to a Hessenberg form, are ex-
pensing tremendous communication cost in massively parallel processing. The communication avoiding (CA)
and communication hiding (CH) approaches proposed for Householder tridiagonalization offer the significant cost
reduction by removing 80% of ‘the number of collective communications (startup overhead).’ It reaches 15 to
20% of the total computation time on a large scale parallel system such as K computer. The principle of CA for
Householder transformation consists reconstruct and reorder of the calculation of the reflector vector and matrix-
product. Originally, we need two steps i) u := a+sign(a1)|a|e1, then ii) v := Au. But, we apply that i) [v′,y] := A[a,e1],
ii) σ := sign(y1)|a|,u := a+σe1,v := v′+σy. This reformation relaxes tight data dependency between the reflector u
and obtaining v by the matrix product. Though it describes a one-side operation, it is also applicable to two-side
operation. The similar idea of CA and CH can be applied to other two transformation methods. Proposal of two
reconstructed transformation methods, especially the reduction to a Hessenberg form, its complexity analysis,
and experimental results of K-computer are presented in the mini-symposium.

3
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#4: ELPA-AEO: recent optimizations for modern architectures
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pavel Kus
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hermann Lederer, Andreas Marek

The ELPA library is a well established eigensolver library used by many computational chemistry and materials
science codes, which can be efficiently used for a large range of matrix sizes and on different hardware types with
good scaling properties. To maintain its excellent performance on modern emerging architectures, a constant
effort is required for various types of optimizations. In this contribution we present some of the recent results
obtained within the ELPA-AEO project, concerning modern GPUs as well as modern Intel systems, including
KNL and more recently the Skylake processors. An overview of recent hardware-specific optimizations will be
given and performance comparisons will be shown.
Since there are multiple systems with different architectural features, each requiring slightly different approaches
and different fine-tuning of many available parameters on the algorithmic level, it is increasingly difficult for the
user to correctly select all the parameters in order to achieve the optimal performance for a given setup. It is
also not possible to determine the optimal parameter setting for all combinations of problem and hardware setups
a-priori, since there are simply too many of them. For this reason we introduced the autotuning capability within
the ELPA library. It allows the user to automatically fine-tune the parameters, if the library is repeatedly used for
similar problem setups, which is often the case in practical computations. We present an overview of this new
feature and show examples of its practical application and possible performance benefits.
Part of the work is co-funded by BMBF grant 01IH15001.

MS 1.2.B CAB G 61 SCALABLE COMMUNICATION-REDUCING KRYLOV SUB-
SPACE METHODS

Chair: S. Cools

#5: Hiding global communication in the Conjugate Gradient method using deep pipelines
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jeffrey Cornelis
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Siegfried Cools, Wim Vanroose

Krylov subspace methods are widely used as iterative solvers for sparse linear systems of equations. One of
the most well-known algorithms is the Conjugate Gradient (CG) method by Hestenes and Stiefel [1]. Although
the algorithm dates back to a paper published in 1952, the CG method is the main workhorse in lots of scientific
applications, mainly because of its numerical simplicity and easy implementation.
Many of the Krylov subspace methods used today, including CG, were developed several decades ago, when
the main goal was to minimize the total number of floating point operations (flops). However, with HPC hardware
transitioning to the exascale regime, the current interest has shifted to increasing the parallel scalability of these
iterative solvers on large parallel machines. The main bottleneck for scalability does not originate from the sparse
matrix vector product (SPMV), since these often only require communication between neighbouring nodes, but
from the calculation of dot-products. This is due to the fact that, after the local part of the dot-product has been
calculated, the resulting number has to be communicated through a global reduction tree to gather the scalar
result, after which this result has to be broadcast back again to each individual processor.
Two general ideas have emerged to improve parallel scalability; namely so-called “communication avoiding” and
“communication hiding” methods. The first idea refers to reducing the total number of global reductions in the
algorithm. In addition to avoiding synchronization bottlenecks, communication can be “hidden” by overlapping it
with independent calculations. In pipelined Krylov subspace methods [2] the global reduction phase is overlapped
with the SPMV computation, leading to improved parallel performance. However, when global reduction takes
longer than the time required to compute an SPMV, communication cannot be overlapped completely. In this
case it has been proposed to overlap the global reduction phase with the computation of multiple SPMVs, i.e. use
a “deep pipeline”.
A pipelined variant of GMRES was developed by Ghysels et al. [2]. In analogy to the latter method, we have re-
cently derived a variant of the Conjugate Gradient algorithm with deep pipelines [3], denoted as p(l)-CG. Although
initial scaling results with various pipeline lengths are promising, numerical stability should be closely monitored
[4]. Since the p(l)-CG algorithm uses several additional recurrence relations to update the approximate solution,
the propagation of rounding errors in finite precision arithmetic typically differs from the classic CG algorithm.
This talk presents the basic theoretical ideas behind pipelined Krylov subspace methods with deep pipelines and
comments on their parallel performance and numerical properties.

[1] Hestenes, M. R., Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems . Journal of Research of
the National Bureau of Standards, 49(6).

[2] Ghysels, P., Ashby, T. J., Meerbergen, K., Vanroose, W. (2013). Hiding global communication latency in the GMRES
algorithm on massively parallel machines. SIAM Journal on Scientific Computing, 35(1), C48-C71.

[3] Cornelis, J., Cools, S., Vanroose, W. (2018). The communication-hiding Conjugate Gradient method with deep pipelines.
submitted to SIAM Journal on Scientific Computing, arXiv preprint arXiv:1801.04728.

[4] Cools, S., Yetkin, E. F., Agullo, E., Giraud, L., Vanroose, W. (2018). Analyzing the effect of local rounding error propaga-
tion on the maximal attainable accuracy of the pipelined Conjugate Gradient method. SIAM Journal on Matrix Analysis
and Applications, 39(1), 426-450.
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#6: Recycling Krylov method for the solution of sequence of linear systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hussam Al Daas
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laura Grigori, Pascal Hénon, Philippe Ricoux, Olivier Tisso

We propose a variant of GMRES to solve a sequence of linear systems issued from reservoirs simulations. It is
based on enlarging the Krylov subspace, where multiple basis vectors are added at each iteration to enhance
convergence. Since our method inherits a block scheme, we are interested in detecting inexact breakdowns. The
matrix might not change from a linear system to the next in the sequence. It might also change but the difference
is relatively small. Thus, we use recycling strategy of the Krylov subspace to improve the convergence. In its basic
form, our method includes three global communication per iteration. We reorder mathematical operations in the
basic method in order to reduce global communication. Scalable Communication-Reducing Krylov subspace
methods.
#7: Iteration-Fusing Conjugate Gradient
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sicong Zhuang
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marc Casas

We present the Iteration-Fusing Conjugate Gradient (IFCG) approach which is an evolution of the Conjugate
Gradient method that consists in i) letting computations from different iterations to overlap between them and ii)
splitting linear algebra kernels into subkernels to increase concurrency and relax data-dependencies. It presents
two ways of applying the IFCG approach: The IFCG1 algorithm, which aims at hiding the cost of parallel reduc-
tions, and the IFCG2 algorithm, which aims at reducing idle time by starting computations as soon as possible.
Both IFCG1 and IFCG2 algorithms are two complementary approaches aiming at increasing parallel performance.
Extensive numerical experiments are conducted to compare the IFCG1 and IFCG2 numerical stability and per-
formance against four state-of-the-art techniques. By considering a set of representative input matrices, we
demonstrate that IFCG1 and IFCG2 provide parallel performance improvements up to 42.9% and 41.5% respec-
tively and average improvements of 11.8% and 7.1% with respect to the best state-of-the-art techniques while
keeping similar numerical stability properties. Also, we provides an evaluation of the IFCG algorithms’ sensitivity
to system noise and it demonstrates that they run 18.0% faster on average than the best state-of-the-art technique
under realistic degrees of system noise.
#8: Partial convergence in block Krylov solvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emmanuel Agullo
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luc Giraud, Yan-Fei Jing, Julien Langou, Thomas Mijeux

The solution of linear systems with multiple right-hand sides given simultaneously appear in many academic and
industrial simulations. For large problem sizes, block variant of classical Krylov solvers appear as a suited solu-
tion technique to reduce the synchronization points but they must be equipped to properly manage the different
convergence rate of the right-hand sides and possibly the convergence of linear combination of them that could
lead to possible breakdowns or useless computation. In the talk, we will discuss numerical techniques that can
be considered to handle such a situation; more precisely we will present two techniques in the context of block
GMRES family and their implementation in the Fast Accurate Block Linear krylOv Solver (FABuLOuS) software
package.

MS 1.2.C CAB G 51 HIGH PERFORMANCE ACCURATE COMPUTING I Chair: H. Hasegawa
#9: High-performance implementations of reproducible and accurate matrix-multiplication
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daichi Mukunoki
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Roman Iakymchuk, Stef Graillat, Takeshi Ogita

Parallel numerical computations with the underlying floating-point operations may suffer from round-off errors
as well as their accumulations, which impact the accuracy and reproducibility of the final result. This can be
observed not only for ill-conditioned, but also for regular problems. Thus, there is a need to guarantee accuracy
and reproducibility of numerical computations. In this talk, we target to achieve both reproducible and correctly
rounded matrix multiplication by applying the ExBLAS approach as well as the Ozaki solution. In addition, we
employ some performance optimization techniques to obtain high-performance implementations on GPUs and
provide the upper bound performance models for each implementation. Finally, we compare the obtained results
against the double-precision cuBLAS implementation on various GPUs.
#10: Reproducibility of sparse matrix-vector product and sparse solvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Roman Iakymchuk
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daichi Mukunoki, Stef Graillat

Sparse systems of linear equations often arise in many applications in various domains from computational fluid
dynamics to plasma physics and space weather forecast. Common approaches are the Jacobi method and the
Conjugate Gradient method. In this talk, we aim to ensure reproducibility and accuracy of these two methods
that could be violated in parallel executions due to, for example, the non-associativity of floating-point operations.
Leveraging the hierarchical structure of linear algebra libraries, we construct our approach for these methods by
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securing reproducibility and accuracy of their underlying building blocks such as sparse-matrix vector product
(SpMV), dot product, and vector scaling. Finally, we present the performance and accuracy results for various
GPUs.
#11: Accurate Numerical Solutions of Large-Scale Linear Systems and Their Verification
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Katsuhisa Ozaki
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Takeshi Ogita

This talk concerns accurate numerical computations for large-scale linear systems. In a large matrix, rounding
errors accumulate and lead to inaccurate computational results. We assume a dense matrix without any specified
structure. We propose accurate numerical algorithms for the matrix-vector product based on [1,2] and implement
them for parallel and distributed computers. Using the algorithms, a matrix-vector operation can be performed in a
similar way to GEMV in BLAS and PBLAS as if computed in twice the working precision. Applying it to computation
of residuals in iterative refinements, we can give accurate approximate solutions of linear systems. Additional
computational cost for the iterative refinements is negligible compared to an LU decomposition of the coefficient
matrix. Finally, we implemented two verification methods for linear systems [3,4] using PBLAS and ScaLAPACK.
Verification methods aim to produce approximation solutions with their error bounds. Thanks to Fujitsu, in PBLAS
we can safely use directed rounding such as roundTiesToEven, roundTowardPositive, roundTowardNegative, and
roundTowardZero defined by IEEE 754 [5]. Applying accurate routines for a matrix-vector product to enclosure of
residuals, we can obtain accurate approximate solutions with their tight error bounds. The presentation will show
numerical examples using RIKEN’s K computer.

[1] T. Ogita, S.M. Rump, and S. Oishi. Accurate sum and dot product. SIAM Journal on Scientific Computing, 26(6):1955–
1988, 2005.

[2] N. Yamanaka, T. Ogita, S.M. Rump, and S. Oishi. A parallel algorithm for accurate dot product. Parallel Computing,
34(6–8):392–410, 2008.

[3] T. Ogita, S.M. Rump, and S. Oishi. Verified solution of linear systems without directed rounding. Technical Report
2005-04, Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan, 2005.

[4] S. Oishi and S.M. Rump. Fast verification of solutions of matrix equations. Numer. Math., 90(4):755–773, 2002.
[5] IEEE 2008. ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. IEEE, New York.

#12: Accurate eigenvector computations for clustered eigenvalues by iterative refinement
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Takeshi Ogita
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kensuke Aishima

Efficient refinement Algorithms are proposed for symmetric eigenvalue problems. The structure of the algorithms
is straightforward, primarily comprising matrix multiplications. Therefore, the algorithms benefit from highly opti-
mized numerical libraries, such as BLAS, on parallel computers. We first present a basic algorithm to improve
all eigenvectors associated with well-separated eigenvalues. We show that the proposed algorithm converges
quadratically if a modestly accurate initial guess is given, including the case of multiple eigenvalues. Moreover,
for multiple eigenvalues, we prove quadratic convergence whenever all simple eigenvalues are well separated.
The convergence rate is also preserved in finite precision arithmetic if the working precision is sufficiently high
in the algorithm. Our convergence analysis can be extended to Hermitian matrices. On the basis of the basic
algorithm, we propose a practical algorithm that can improve eigenvectors associated with clustered eigenvalues.
Iterative use of the proposed algorithms computes an eigenvalue decomposition of a real symmetric matrix that is
accurate according to working precision. Numerical results demonstrate excellent performance of the proposed
algorithm in terms of convergence rate and overall computational cost, and show that the proposed algorithm is
considerably faster than a standard approach using multiple-precision arithmetic.
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MS 1.3.A CAB G 11 EFFICIENT DENSE EIGENSOLVERS - METHODS AND AP-
PLICATIONS II

Chair: B. Lang

#13: Open Infrastructure for Large-Scale Kohn-Sham Density-Functional Theory: The ELSI Project
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Victor Yu
Co-authors: . Alberto Garcia, William Huhn, Mathias Jacquelin, Weile Jia, Murat Keceli, Raul Laasner, Yingzhou
Li, Lin Lin, Jianfeng Lu, Alvaro Vazquez-Mayagoita, Chao Yang, Haizhao Yang, Volker Blum
Molecular and materials simulations based on Kohn-Sham density-functional theory (KS-DFT) are the production
workhorses for a broad range of applications in physics, chemistry, biology, and materials science. In large-scale
KS-DFT calculations, solving or circumventing a generalized eigenvalue problem is often the major computational
bottleneck, which limits the achievable system size to roughly several thousand atoms. This is a generic problem
that must be addressed by essentially all current electronic structure codes. Conventional KS-DFT implementa-
tions solve the eigenvalue problem by direct or iterative diagonalization, whose computational complexity scales
cubically with respect to the system size. There exist alternative algorithms that circumvent the explicit solution
of the eigenvalue problem by directly computing the density matrix. With a smaller scaling exponent and a larger
prefactor, these methods can potentially outperform diagonalization for large systems beyond a thousand atoms.
We here present an open-source, integrated software interface, ELSI (http://elsi-interchange.org), to
simplify the access to existing strategies to address the KS eigenvalue problem for different problem classes on
different scales. Currently supported algorithms are the massively parallel dense eigensolver ELPA, the orbital
minimization method implemented in libOMM, the pole expansion and selected inversion method (PEXSI), and
the shift-and-invert parallel spectral transformation eigensolver (SIPS), including both cubic scaling and reduced
scaling methods. The ELSI interface aims to simplify the implementation and optimal use of these methods, by
providing (a) reasonable default settings for a chosen solver, (b) automatic conversion between input and internal
working matrix formats, and (c) suggestions on the optimal solver for a given problem. Comparative benchmarks
performed on distributed memory supercomputing architectures are presented for system sizes up to ten thou-
sand atoms. The strengths and limitations of the solvers will be discussed. Finally, we introduce our proposal of
constructing a meta-benchmark set and using it to facilitate the development and test of existing and new solvers
in electronic structure theory.
#14: Performance benchmark of standard eigensolver on KNL systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inge Gutheil
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the invention of many-core systems like the Intel KNL standard eigensolver libraries have to be adapted
to those architectures. The pure MPI parallelizing strategy may be no longer suited for these new architectures
because too many MPI processes need too much memory for buffers.
In this talk we will present the first performance evaluation results of the eigensolver libraries ELPA and EigenExa
on the JURECA booster KNL nodes. Both libraries are tuned for KNL usage and they offer a hybrid parallelization
with MPI in combination with OpenMP. The ELPA 2-step eigensolver provides special kernels with KNL intrinsics
for the back transformation of eigenvectors and their usage indeed leads to better performance on KNL than using
just AVX2 kernels.
On a single KNL node still the pure MPI versions of both libraries deliver the best performance, but when more
nodes are used the hybrid parallelization becomes superior.
Up to now the JURECA booster module is still a standalone system but in future it will be integrated to the Haswell
system JURECA to allow applications that use both parts in combination. In order to see whether it makes sense
to offload the solution of an eigenproblem we investigate the performance of the libary eigensolvers on the KNL
nodes now and compare it to the performance of the same routines on the Haswell nodes.
#15: Eigenvalue problems in large-scale first-principles electronic structure calculations
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jun-Ichi Iwata
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First-principles electronic structure calculation based on the Density Functional Theory (DFT) has been an indis-
pensable tool for many fields of materials science and engineering. With the development of supercomputers,
the target size of first-principles DFT calculations becomes larger and larger, and nowadays, a few hundreds
to a thousand of atoms has been computable with standard plane-wave based DFT program codes. However,
the computable sizes are still not satisfactory for clarifying or designing the material properties in realistic sit-
uations. The challenge for large scale calculations with state-of-the-art supercomputers is one of the ways to
overcome the size difficulty in the first-principles electronic structure calculations. In this talk, I’d like to intro-
duce our program code RSDFT, which has been developed to perform large-scale first-principles calculations
on massively-parallel computers including the Japanese flagship machine K computer. RSDFT is based on the
real-space finite-difference pseudopotential method. The basic equation of RSDFT is a discretized Kohn-Sham
equation, which is a nonlinear eigenvalue problem with a large-sparse matrix. In the RSDFT code, we solve
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the nonlinear eigenvalue problem with a subspace-iteration method combining a Broyden’s or Pulay’s method for
nonlinear equations. Contrary to the standard plane-wave methods, the real-space method needs not to use Fast
Fourier Transformations, which requires heavy communication burden, and therefore the scalability of RSDFT is
rather good even in the calculations with tens of thousands of compute nodes. It has also been started to develop
RSDFT for the next flagship computer called post-K computer, and we aim to make first-principles calculations on
the system with a few thousand of atoms easy tasks. I would like to also talk about the development of RSDFT
for the post-K computer.
#16: Ab initio Materials Simulations: A Challenge for Eigensolvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Christian Carbogno
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matthias Scheffler

Over the last decades, the development of ab initio electronic structure theory and especially density-functional
theory (DFT) has enabled unpreceded insights and advancements in chemistry, solid state theory, and material
science. However, the N3 scaling of matrix diagonalizations is the computational bottleneck in today’s DFT cal-
culations, which hinders the systematic investigation of large system sizes (> 1,000 atoms). Addressing such
system sizes is of exceptional importance to solve many grand challenges of scientific, societal and industrial
relevance.
For electronic structure theory applications, ELPA is the leading library for the massively parallel, highly scalable
direct solution of eigenproblems. In this talk, we discuss how recent advancements in ELPA can now be utilized
in the electronic-structure code FHI-aims to have an impact at the application level, so to enable faster calcula-
tions for larger system sizes. In particular, we discuss how this facilitates running ab initio molecular dynamics
simulations that are necessary for the accurate and reliable assessment of thermal conductivities.
∗ This work has been performed together with the ELPA-AEO consortium (http://elpa-aeo.mpcdf.mpg.de)
within the ELPA-AEO project (BMBF 01IH15001)

MS 1.3.B CAB G 61 KRYLOV AND REGULARIZATION METHODS FOR
LARGE SCALE INVERSE PROBLEMS

Chair: W. Vanroose

#17: Krylov methods for the Helmholtz equation in forward and inverse problems.
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wim Vanroose
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krylov methods for Helmholtz and Scattering equation
Inverse and forward scattering problems require the repeated solution of a Helmholtz problem. These appear in
imaging, chemistry, acoustic and many other applications.
Over the years various iterative Krylov methods with special preconditions have been developed. Such as com-
plex shifted Laplacian, wave ray or sweeping preconditioners.
However, within the framework of inverse and forward scattering problems the observable is not necessarily the
solution of the Helmholtz equation but rather an integral over the solution. Indeed, for example the far field map
is calculated as a volume or, through stokes, a surface integral over the solution. This leaves additional freedom
to develop an efficient solver since the solution of the Helmholtz equation is only an intermediate result.
In this talk we illustrate that if we deform the contour of integration, we have to solve a complex shifted Helmholtz
problem rather then a Helmholtz equation with a real wavenumber. The first is easy to solve with multigrid.
The underlying intuition is that the observables are integrals over rapidly oscillating functions. Why spend a lot of
effort of solving the Helmholtz equation accurately to resolve all the oscillations if they are cancelled out anyway
by the integral? The integral is determined by the critical points of the oscillation. They need to be represented
well and this can be done by a complex shifted problem.
#18: Generalized Davidson and multidirectional-type methods for the GSVD
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ian Zwaan
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Michiel Hochstenbach

We propose two new iterative methods for computing nontrivial extremal generalized singular values and vectors.
The first method is a generalized Davidson-type algorithm and the second method employs a multidirectional
subspace expansion technique. Both methods allow for tick restarts. Essential to the latter method is a fast
truncation step designed to remove a low quality search direction and to ensure moderate growth of the search
space. Numerical experiments indicate that both methods are competitive.
#19: Parallel algorithms for hyperbolic PDE-constrained optimization problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andreas Mang
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . George Biros, Amir Gholami

We present effective algorithms for the solution of hyperbolic PDE-constrained optimization problems with appli-
cations in medical image analysis. Our contributions are: (i) we examine algorithmic scalability of our memory-
distributed solver; (ii) we present and study an improved implementation of the computational kernels of our solver
(fast Fourier transform and cubic interpolation) of our solver; (iii) we explore different variants of the preconditioner
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for the reduced space Hessian; and (iv) we report results for the performance of our methods on clinically relevant
problems.
We use a globalized, matrix-free Newton–Krylov method for numerical optimization. We use a spectral collocation
scheme for the discretization in space, and an unconditionally stable semi-Lagrangian scheme for the integration
in time. Our code is implemented in C++ and uses the message passing interface (MPI) library for parallelism. We
will study the rate of convergence, time-to-solution, and inversion accuracy of our solver. We will report scalability
results for different high-performance computing platforms. We will see that our distributed-memory solver allows
us to solve problems of unprecedented scale (with up to 200 billion unknowns). We will see that our improved
solver yields a speedup of up to one order of magnitude compared to the state-of-the-art; we can solve clinically
relevant problems in less than 2 minutes on one node with 24 cores.
#20: Projected Newton method for a system of Tikhonov-Morozov equations
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nick Schenkels
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wim Vanroose

Many inverse problems can be written as sparse, large scale linear or nonlinear systems. Newton-Krylov sub-
space methods are well suited to deal with these kinds of problems and there exists a vast literature on how
these methods can be efficiently implemented on large parallel systems. However, in order to solve an inverse
problem some form of regularization is typically required. Often this results in a Tikhonov-like formulation of the
problem where minimizing the discrepancy between the model predictions and the observed data is balanced
with minimizing a regularization term. This balance is governed by a so-called regularization parameter that has
to be determined, which is a non-trivial issue. In many applications this regularization parameter is chosen by
trial-and-error or by using some grid based approach, which are both inefficient and computationally expensive.
It is, however, possible to write down a non-linear system of equations for both the solution of the inverse prob-
lem and the regularization parameter by combining the Tikhonov normal equations and Morozov’s discrepancy
principle.
If this system is solved using Newton’s method, convergence can in general not be guaranteed. We therefore
derive a limit on the Newton step sizes and prove that starting from a point that satisfies the Tikhonov normal
equations for any regularization parameter we can guarantee the convergence. Because each Newton iteration
requires, amongst others, solving the Jacobian system for the Newton search direction, this method is compu-
tationally expensive – even for small inverse problems. By using a bidiagonal decomposition of the matrix it is,
however, possible to project the non-linear system onto a low-dimensional Krylov subspace where this is no longer
an issue. We also present numerical results from applications to benchmark matrices and computed tomography
that illustrate the workings of these methods and compare them with other known regularization methods.

MS 1.3.C CAB G 51 HIGH PERFORMANCE ACCURATE COMPUTING II Chair: H. Hasegawa
#21: A fast and efficient preconditioning method for solving ill-conditioned dense linear systems using
partly simplified LU factors
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yuka Kobayashi
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Takeshi Ogita

We consider solving an ill-conditioned dense linear system

Ax = b, A ∈ Rn×n, b ∈ Rn, (1)

where the condition number κ(A) is too large to solve (1) by ordinary an floating-point arithmethic. We propose a
preconditioning method to obtain an accurate approximate solution x̃ of (1). The method is based on the previous
preconditioning method [1] using an LU factor.
Let u denote the relative rounding error unit in working precision of floating-point arithmetic. If κ(A) becomes
large such that u ·κ(A) ≥ 1, an approximate solution of (1) becomes unstable. Moreover, in such case, iterative
refinement methods using LU factors cannot work. To overcome this, a possibility is to use multiple-precision
arithmetic. However, if we apply multiple-precision arithmetic to entire computations, computing time increases
significantly regardless of the size of condition number of A. To remedy these defects, if A is ill-conditioned, we
apply preconditioning methods to (1) as

MAx = Mb, M ∈ Rn×n

for reducing the condition number of A such that κ(MA)� κ(A).
In the previous preconditioning method in [2], an approximate inverse of A is adopted as M for problems such that
κ(A)≤ (u−1)2. In a similar way, in [1], an LU factor is adopted as M to reduce computational cost. If we use Crout’s
LU factorization for A, then it is likely that κ(A)≈ κ(L). We can utilize this nature to decrease the condition number
of A with a left preconditioner as follows. First, we execute Crout’s LU factorization of A′ such that A′ = PA ≈ LU .
Next, we obtain XL ≈ L−1 and b′ = Pb. Then, we have

XLA′x = XLb′.
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Here, it is expected that κ(XLA′)≈ 1+u ·κ(A).
In this presentation, we focus on the distribution of singular values. We define the singular values of A such that
σ1 ≥ σ2 ≥ ·· · ≥ σn. Suppose that A has m relatively large singular values as

σm ≥ α ·σ1, σm+1 < α ·σ1,

where α is the threshold with u ≤ α ≤ 1. Using Crout’s LU factorization for A, the structure of L is likely to be as
follows.

L =

[
L11 O

] }
m
}

nL21 L22

|(L11)ii| ≥ α‖A‖∞ (i = 1, · · · ,m)

|(L22)11|< α‖A‖∞

We observe that the magnitude of L22 is relatively too small to be useful, and replacing L22 with αIn−m does not
affect the effect of preconditioning where I is the identity matrix. Therefore, we decide to replace L with

L̃ :=
[

L11 O
L21 αIn−m

]
.

After that, we compute XL ≈ L̃−1 and solve XLAx = XLb. Then it is expected that κ(XLA)≈ 1+ακ(A). The proposed
method can significantly reduce computational cost for preconditioning. We will show the numerical results in our
presentation.

[1] Y. Kobayashi, T. Ogita, Accurate and efficient algorithm for solving ill-conditioned linear systems by preconditioning meth-
ods, NOLTA, IEICE, 7 (2016), 374–385

[2] S. M. Rump, Approximate inverses of almost singular matrices still contain useful information, Forschungsschwerpunktes
Informations- und Kommunikationstechnik, Technical Report 90.1, Hamburg University of Technology, Hamburg, Germany,
1990.

#22: Strategy of Precision Switching for Mixed Precision Iterative Method
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Masaki Suwa
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Akihiro Fujii, Teruo Tanaka, Hidehiko Hasegawa

The convergence of Krylov subspace methods is influenced by the rounding errors. The high precision arithmetic
operation improves the convergence, however the computation time increased. The mixed precision iterative
method proposed by Kotakemori et al., called SWITCH, is one of the methods to reduce computation time.
SWITCH solves partway in double precision and restarts its iterative process with high precision using the result
in double precision as an initial solution. As in this method, the mixed precision iterative method is speeded up
by not using the high precision arithmetic operation as much as possible. Kotakemori et al. evaluated the mixed
precision iterative method using double precision and double-double precision. However, the required precision is
matrix dependent and there are cases which cannot be solved even with double-double precision. We evaluated
SWITCH type mixed precision iterative method with more flexible and high precision using GMP. Especially, we
tested GMRES, GCR, and BICGSTAB iterative methods. In this presentation, we examine the effectiveness of
precision switching strategy for the SWITCH type mixed precision iterative method using arbitrary precision.
#23: Generation of large scale matrices for numerical examples
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Takeshi Terao
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Katsuhisa Ozaki

A test matrix is useful for checking the accuracy and stability of algorithms in numerical linear algebra. Our aim
in the present study is to develop efficient algorithms that produce very large-scale dense matrices with spec-
ified singular values for parallel and distributed computers. The target dimension of such matrices is greater
than 1,000,000. MATLAB’s built-in ‘gallery’ function can set five distributions of singular values: one large sin-
gular value, one small singular value, geometrically distributed singular values (default), arithmetically distributed
singular values, and random singular values with uniformly distributed logarithm. The aim is to implement such
functions on parallel and distributed computers. First, two approximate orthogonal matrices and a diagonal matrix
are generated. Next, we multiply the orthogonal matrices from the left and the right sides with the diagonal matrix.
The discussion is based on a form of singular value decomposition. One possibility for obtaining the approximate
orthogonal matrices is to apply QR decomposition, that is, decomposition into a product QR of an orthogonal ma-
trix Q and an upper triangular matrix R. We implemented two methods for generating the test matrix by using the
specified singular values based on PBLAS and Scalapack. One is based on QR decomposition (pdgeqrf). The
other is based on ChoekskyQR and its extension (called ChoelskyQR2). We will compare the computing times
and the accuracies of the two methods for shared memory computers. In addition, efficiency of parallelization for
a large scale matrix on the Riken K computer will be introduced.
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#24: Accurate Interval Matrix Computations
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stef Graillat
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this talk, we will present some accurate and parallel algorithms for interval computations with matrices.
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CP 1.4.A CAB G 11 APPROXIMATE AND SPARSE FACTORIZATIONS Chair: M. Bollhöfer
#25: An improved exact algorithm and an NP-completeness proof for 2D sparse matrix partitioning.
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timon Knigge
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rob Bisseling

Sparse matrix-vector multiplication (SpMV) is a common elementary operation performed in numerical algorithms.
In applications involving very large matrices, this operation can be accelerated considerably by distributing the
computation over multiple processors, giving each of k processors a subset of roughly N

k out of N nonzeros.
When constructing such a balanced partitioning we typically optimize for minimal total communication volume
between processors during fanout/fanin phases. Unfortunately, sparse matrix partitioning is a computationally
hard problem so that in practice only heuristic solutions are useable. Still, exact algorithms are useful to generate
benchmarks and reveal where heuristics succeed or fail. We build on recent work by Pelt and Bisseling (2015)
who proposed an exact combinatorial branch-and-bound solution, extending it with tighter bounds to solve larger
instances. We also give a reduction showing that the 2D sparse matrix partitioning problem is N P -Complete
even when the number of processors is fixed to k = 2.
#26: Solving ill-conditionned linear systems using extended sparsification: an application to extruded
meshes
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leopold Cambier
Co-authors: . . . . . . . . . . . . . . . . . . . . Chao Chen, Siva Rajamanickam, Erik Boman, Raymond Tuminaro, Eric Darve

Solving highly ill-conditioned sparse linear systems remains a challenging task in scientific computing. In this
project, we explore the application of the extended sparsification method on a matrix arising from the discretization
of an elliptic PDE on an extruded mesh.
The extended sparsification algorithm is a technique where one compresses fill-in edges arising from far fields
interactions and introduces new unknowns to preserve the sparsity pattern of the original linear system. This
results in a generic (parallel) algorithm with little customization required, except the partitioning algorithm and
the compression tolerance parameter. It can be used either as a low-accuracy direct solver or a preconditioner
coupled with an iterative method. The low-rank basis can be further improved by adding custom vectors provided
by the user. If those correspond to the small eigenvalues of the system, it typically improves the accuracy of the
solver.
The studied application comes from the discretization of ice-flows on Antarctica. Because the physical quantities
of interest have large variations in scale, the solution is very sensitive to small scales and the overall system has
a condition number of more than 1010.
This property of the system happened to severely affects the ability to use the original solver as a black-box
preconditioner. Without any modifications, the algorithm performs poorly, needing > 100 GMRES iterations on
even low-resolution problems. With a geometry-aware domain partitioning, the solver works better. However, the
number of iterations still does not decrease until one reaches high accuracies, hinting at the fact that most of the
relevant information is hidden in the small scales.
The key in making the algorithm efficient is to scale yet-to-be-compressed edges with the diagonal pivot. This
usually has little effect on moderately ill-conditioned problems; however, since in this case some pivots may be
near-singular, the scaling has a significant effect. With this modification, the preconditioner behaves significantly
better: the number of iterations steadily decreases starting at low accuracies.
Finally, we apply the algorithm on problems having from 60 000 to 500 000 000 unknowns. We successfully
demonstrate that the algorithm is efficient, scaling much better than direct methods. It is also more versatile that
for instance multigrid and can be applied to a wide range of problems with little to no modification.
#27: High Performance Large-Scale Matrix Inversion using Block Incomplete LU Factorizations
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matthias Bollhöfer
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Olaf Schenk

We consider application problems that heavily rely on computing parts of the matrix inverse approximately. Among
these problems are large sparse inverse covariance matrix estimation as well selective inversion in electronic
structure calculations. Typically the accuracy that is required to compute parts of these matrix inverses is relatively
high, thus using incomplete factorizations and inverting the triangular factors leads to relatively dense matrices
which makes usual incomplete factorization infeasible for this kind of applications. Instead we propose the use
of block incomplete factorization methods where appropriate block structures are constructed to allow for the use
of dense matrix kernels. We demonstrate the use of these approximate factorization methods inside applications
that require matrix inversion. Furthermore, the benefits of parallelized matrix inversion and the use of multi-
threaded dense matrix kernels is demonstrated.
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CP 1.4.B CAB G 61 MULTIGRID AND MISCELLANEOUS Chair: E. Gallopoulos
#28: Performance and implementation of a geometric multigrid solver with Trilinos
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matthias Frey
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andreas Adelmann

The Poisson problem arising from large-scale N-body problems coupled with Maxwell’s equations in the electro-
static limit represents an accuracy and efficiency bottleneck in simulations of neighbouring bunch effects in high
intensity cyclotrons. Standard particle-in-cell models are not able to capture the tiny effects between bunches
without wasting memory in regions of void due to the uniformity of the fine mesh. Block-structured adaptive
mesh refinement algorithms are a suitable method to overcome this issue. Their hierarchy of levels and grids
is applied to solve Poisson’s equation using an adaptive geometric multgrid algorithm. This talk presents a new
implementation of Martin’s and Cartwright’s algorithm based on Trilinos. Furthermore, a benchmark study of var-
ious preconditioners and solvers is shown with a comparison to AMReX’s multigrid solver. A scalability test up to
13’824 cores shows a parallel efficiency of around 60% on Piz Daint.
#29: AMG based on compatible weighted matching for GPUs
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dario Pasquini
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Massimo Bernaschi, Pasqua D’Ambra

We describe the main issues found in the design of an efficient implementation, tailored to GPGPUs, of an Alge-
braic MultiGrid (AMG) preconditioner recently proposed by one of the authors and already available for CPU in
the open-source BootCMatch code. The AMG method relies on a new approach for coarsening sparse symmet-
ric positive definite matrices, which we refer as coarsening based on compatible weighted matching. It exploits
maximum weight matching in the adjacency graph of the sparse matrix and the principle of compatible relaxation
to define a pairwise aggregation of unknowns. The aggregates are unknown pairs coupled in a maximum product
matching of the original sparse matrix graph with suitable edge weights. The final aim is to enhance the diagonal
dominance of a matrix that is the hierarchical complement of the resulting coarse matrix with respect to a given
scalar product, thereby improving the convergence properties of a corresponding compatible relaxation scheme.
The matched nodes are aggregated to form coarse set of unknowns, and piecewise constant or smoothed inter-
polation operators are applied for the construction of a multigrid hierarchy. No reference is made to any a priori
knowledge on the matrix origin and possible information about smooth errors are used to define edge weights
assigned to the original matrix graph. More large aggregates can be obtained by combining multiple steps of
the basic pairwise aggregation. The most demanding kernel in this type of coarsening is the computation of
an efficient maximum product matching. Accurate solutions for computation of maximum product matching in
a graph are based on the Hungarian algorithm to search optimal augmenting paths in the matrix between un-
matched vertices. This algorithm is a sequential process representing a roadblock in the search for an efficient
parallel computation of a maximum weight matching. In our attempt to exploit high computing power of GPUs in
the design of a parallel coarsening based on compatible weighted matching, we adopt an approximate solution
widely used in related fields, such as in coarsening strategies for multilevel data partitioning as well as in scaling
and permuting sparse matrices for efficient parallel direct solvers. We show that approximate solutions based on
a recently proposed multithreaded matching algorithm, referred as the suitor algorithm, allow us to obtain good
quality coarse matrices for our AMG on GPUs, largely reducing run times with respect to the original sequen-
tial algorithm implemented in BootCMatch. We will show results on a large set of sparse matrices arising from
discretization of partial differential equations as well as from Laplacian operators of general complex graphs.
#30: Adapting MPRGP algorithm for solving SVM problems using PermonSVM
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marek Pecha
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . Martin Cermak, Zdenek Dostal, Vaclav Hapla, David Horak, Jakub Kruzik

The presentation deals with adapting quadratic programming (QP) algorithms implemented in our PERMON
toolbox, namely its PermonQP module, for machine learning problems of the Support Vector Machines (SVM)
type.
PermonSVM is a new SVM tool designed to run in parallel. It is written on top of PETSc and PermonQP, which
are parallelized using MPI. The parallelism comes mainly from the distribution of matrices across processes.
PermonSVM provides an implementation of classifications via soft-margin SVM with the linear kernel. In the
training procedure, PermonSVM takes advantage of the scalable matrix-vector product in PETSc and an implicit
representation of the Hessian matrix, which saves memory and CPU time. Additional features include a probability
SVM output, fast, load-balanced cross-validation and grid search for parameter tuning, L1 and L2 hinge-loss
functions, and parallel LIBSVM and HDF5 file loader. PermonSVM provides an executable for SVM classification
as well as PETSc-like C API.
Our team has a long-term experience with the development of massively parallel and scalable implementations
of QP algorithms especially for problems arising in contact mechanics in combination with FETI domain decom-
position methods. Driven by this know-how, we have tried to apply the most successful solvers, namely MPRGP
(Modified Proportioning and Reduced Gradient Projection) and its modifications to the solution of QP problems
arising in SVM. MPRGP, designed by Dostal et al., is an efficient algorithm for the solution of convex QP with box
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constraints.
MPRGP is an active set method. Its basic version can be considered as a modification of the Polyak algorithm.
MPRGP combines the proportioning algorithm with the gradient projections. One of the ingredients of the algo-
rithm is the expansion of the active set using fixed step size. The convergence rate is proven for the expansion
step size bounded by twice the reciprocal value of the Hessian norm. Experiments show that this step size is too
short for SVM problems, resulting in a huge number of expansion steps. We will present an adaptive expansion
step size that reduces the number of expansion steps by a factor of up to seven. Further, other numerical results
computed with different hinge loss functions, a technique for calibration of a classification model, and various
scores evaluating the quality of the found hyperplane in each iteration will be presented.
#31: Parallel inverse solver for ultrasound breast tomography
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vaclav Hapla
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Naiara Korta Martiartu, Christian Boehm

Measurements of mechanical waves travelling through a medium can be used to reveal the subsurface and
interior structure of unknown objects. This has plentiful applications ranging from medical imaging at millimetre
scale to seismic tomography at the planetary scale. However, solving these problems is challenging from both a
mathematical and computational perspective, and scalable simulation tools are key to enable scientific progress.
We present an inverse solver for image reconstruction in Ultrasound Computed Tomography (USCT) for early
breast cancer detection. USCT is a non-invasive, radiation-free, pressure-free and low-cost technique that uses
both transmitted and reflected signals to create images of the soft tissue’s acoustic properties. These images are
particularly useful for characterizing interior breast tissue and differentiating between benign and malign lesions.
A short time-to-solution, from taking measurements to obtaining the image, is crucial for any medical imaging
technique. It must be in the order of minutes to be applicable in practice. In addition, the computational resources
in a hospital are limited and should not exceed a dedicated workstation. To meet these requirements, we employ
a simplified physical model using ray-tracing and apply time-of-flight tomography to reconstruct the acoustic prop-
erties of the breast tissue. This approach leads to a linear least-square problem with a large sparse rectangular
matrix. The problem is in general ill-posed, which can be handled by various regularization strategies.
We were originally using MATLAB to assemble, regularize and solve this problem. However, this is undesirable
in practice due to its strict and expensive licensing, and constraints on the parallel solution and computer archi-
tecture. To overcome this, we decided to use Portable, Extensible Toolkit for Scientific Computation (PETSc).
It provides all needed ingredients: distributed vectors and sparse matrices, fast parallel assembly and linear al-
gebra routines, and implementations of least-squares methods. PETSc has a permissive open source license
(FreeBSD), and is highly portable - it can be used with virtually any relevant computer architecture, operating
system, and toolchain.

CP 1.4.C CAB G 51 SPLITTING METHODS Chair: W. Gansterer
#32: The generalized HSS method with a flexible shift-parameter for non-Hermitian positive definite linear
systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guoyan Meng
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ruiping Wen

Based on the Hermitian and skew-Hermitian splitting (HSS), we come up with a generalized HSS iteration method
with a flexible shift-parameter for solving the non-Hermitian positive definite system of linear equations. This
iteration method utilizes the optimization technique to obtain the optimal value of the flexible shift- parameter at
iteration process. Both theory and experiment have shown that the new strategy is efficient.
#33: Adaptive resolution of linear systems based on a posteriori error estimators
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zakariae Jorti
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ani Anciaux-Sedrakian, Laura Grigori, Jan Papež, Soleiman Yousef

In many scientific applications, the resolution of partial differential equations usually leads to solving large sparse
linear systems. This typically involves use of iterative or hybrid methods, which forcibly generate errors due to
numerical approximations. These errors can have a non-uniform distribution in space and there might be some
discrepancy in their magnitudes. In order to reduce the number of iterations and efficiently use the computational
resources, one way could be to adaptively exploit the information about the distribution of the errors within the
algebraic iterations. Since these errors are generally unknown, we suggest to rely on a posteriori error estimates
instead, in particular, on the estimates that are computable locally on each mesh elements and can be decom-
posed in components that identify the source of the error e.g. discretization error, algebraic error. The distinction
between those components allows derivation of adaptive algorithms, which ensure a reduction of calculations
using proper stopping criteria for algebraic iterations, a balancing spatial distribution of errors and an adaptive
mesh refinement. Several works done on equilibrated fluxes estimators go in that direction. In the present work,
we propose an adaptive procedure adjusting to the problem thanks to the information on the algebraic error dis-
tribution. More specifically, we propose to target the regions where the algebraic errors were large and apply a
technique to reduce them and converge faster than a standard solve.

14



Wednesday, 27.06.2018 04:15 PM - 06:15 PM Parallel Session 1.4.

Given an approximate solution and assuming we can tightly estimate the local distribution of the algebraic error
on each mesh element, we decompose the main domain into two disjoint subdomains Omega1 and Omega2,
such that the algebraic error in Omega1 is much greater than its counterpart in Omega2. We first algebraically
formulate this starting hypothesis with the use of local stiffness matrices associated to subdomains Omega1 and
Omega2. Next, we construct a 2x2 block splitting of the matrix, based on which we derive a modification of
the starting hypothesis that involves SPD submatrices. This second formulation motivates the use of a Schur
complement procedure for a targeted decrease of the dominant part of the error. The procedure is based on
an exact factorization on one diagonal block of the matrix, coupled with a Schur complement of the remaining
block. The resulting algorithm can be seen as a hybrid solver since it combines a direct solve on a subdomain
and an iterative solve on its complementary. Then, we present an equivalent preconditioner that, combined
with a PCG for the global system, is equivalent to the Schur procedure with PCG. We proceed with a cost
analysis of the procedure in terms of number of arithmetic operations and compare it to a standard PCG solve.
Some experimental tests done on 2D elliptic problems are presented to show that with the proposed procedure
significant gains can be achieved. In the tests, we start by a couple of academic Poisson problems and then
move on to more complex diffusion problems with inhomogeneous coefficients. We observe that the gain strongly
depends on whether or not the error region was captured fully or partially in the subdomain on which exact
factorization is performed. We conclude that this procedure seems to be most advantageous for problems where
errors are not widely spread with contiguous concentration of high errors.
#34: Parallel Multisplitting Iteration Methods Based on Optimization for Linear Systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rui-Ping Wen
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this report, we not only want to decreases the difficulty of constricting the multisplitting of the coefficient matrix,
but also releases the constrains to the weighting matrices. We present two optimization models to modify parallel
multisplitting iteration methods for solving positive definite (symmetric or non-symmetric) linear systems.
#35: Modulus-Based Parallel Multiplitting Iteration Methods for Linear Complementarity Problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zhong-Zhi Bai
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, by making
use of the modulus reformulation of the target problems and the multiple splittings of the system matrices we
design the parallel modulus-based matrix splitting iteration methods, the modulus-based matrix splitting two-stage
iteration methods and their relaxed variants. We prove the asymptotic convergence of these matrix multisplitting
iteration methods for the H-matrices of positive diagonal entries, and give numerical results to show the feasibility
and effectiveness of the modulus-based matrix multisplitting iteration methods when they are implemented in the
parallel computational environments.
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MS 2.2.A CAB G 11 PARALLEL EIGENVALUE SOLVERS FOR LARGE SCALE
PROBLEMS I

Chair: P. Arbenz

#36: The ChASE library for large Hermitian eigenvalue problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edoardo Di Napoli
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jan Winkelmann

In solving dense Hermitian eigenproblems arranged in a sequence, direct solvers fail to exploit the spectral prop-
erties of the problems which are the distinctive features of being part of a sequence. When such features take the
form of correlations between the eigenvectors of consecutive problems, the potential benefit of exploiting them
can be substantial. We present in this talk ChASE, a new library based on an optimized version of subspace
iteration with polynomial acceleration. ChASE is a modern library written in C++ using the most current concepts
in software engineering which favor a simple integration in application codes and effortless portability over hetero-
geneous platforms. When solving sequences of Hermitian eigenproblems for a portion of their exterior spectrum,
ChASE experiences a considerable speedup and outperforms direct solvers in many scenarios. The library ships
with two distinct parallelization schemes and is easily extensible to other computing architectures.
#37: Solving large-scale eigenvalue problems in amorphous materials
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Giuseppe Accaputo
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peter Arbenz, Peter Derlet

Amorphous solids, like metallic glasses, exhibit an excess of states in the low frequency regime very close to the
boson peak, and the precise nature of these low frequency vibrations remains unclear.
In this paper we investigate the use of a polynomial filtered eigensolver for the computation and study of low
frequency eigenmodes of a Hessian matrix located in a specific interval close to the boson peak regime. A
distributed-memory parallel implementation of a polynomial filtered eigensolver is presented. Our implementation,
based on the Trilinos framework, is then applied to Hessian matrices of different atomistic bulk metallic glass
structures derived from molecular dynamics simulations for the computation of eigenmodes close to the boson
peak. In addition, we demonstrate the parallel scalability of our implementation on multicore nodes. Our resulting
calculations successfully concur with previous results, and anomalous behavior of the particles in the region close
to the boson peak can be observed from the data.
#38: The EVSL package for symmetric eigenvalue problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yousef Saad
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ruipeng Li, Yuanzhe Xi, Lucas Erlandson

A number of applications require the computation of tens of thousands of eigenvalues of very large matrices.
For these problems, it is imperative to take advantage of spectrum slicing strategies whereby different ‘slices’
of the spectrum are extracted independently. The presentation will begin by describing a general approach for
spectrum slicing based on polynomial filtering. This approach can be quite efficient in the situation where the
matrix-vector product operation is inexpensive and when a large number of eigenvalues is sought. Polynomial
filtering can be combined with the Lanczos algorithm with and without restarts, as well as with subspace iteration.
An alternative to polynomial filtering that is generating a growing interest is a class of methods that exploit filtering
by rational functions. Good representatives of this general approach are the FEAST eigensolver and the Sakurai-
Sugiura algorithm. Here we will argue that the standard Cauchy integral–based approach can be substantially
improved upon – especially when iterative solvers are involved. These two classes of techniques have recently
been implemented in a code named EVSL (for eigenvalues slicing library) and the presentation will end with the
latest updates to the code and our progress with its (forthcoming) parallel version.
#39: Symmetry-preserving of the Hankel-type Sakurai-Sugiura eigenvalue solver for large sparse Hermi-
tian definite generalized eigenvalue problem
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yasunori Futamura
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Akira Imakura, Tetsuya Sakurai

In recent years, a contour integral-based method such as the Sakurai-Sugiura method attracts an attention due
to its inherent distributed parallelism. A block Hankel-type variants of the Sakurai-Sugiura method (block SS-H) is
one of the most inexpensive variant because of the absence of large sparse matrix vector multiplications and or-
thogonalizations at the projection phase. However, the small projected problem is not always a Hermitian definite
problem even if the original generalized eigenvalue problem is Hermitian definite. In this presentation, we show
a new block Hankel-type variant of the Sakurai-Sugiura method that can preserve the symmetry of the original
problem. We also present a technique for improving accuracies of eigenvectors and show numerical examples
using problems from practical applications.
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MS 2.2.B CAB G 61 PARALLELIZATION ASPECTS OF SVD AND EVD COM-
PUTATIONS I

Chair: M. Vajteršic

#40: Parallel solution of the generalized eigenvalue problem given in a factored form
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sanja Singer
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edoardo di Napoli, Vedran Novaković and Gayatri Čaklović

The standard LAPACK algorithm for the generalized Hermitian eigenproblem

Ax = λBx,

where both matrices are Hermitian, and B is positive definite, performs a reduction to the standard eigenvalue
problem by using the Cholesky factorization of B. Such an approach is not well suited for the parallel computation
since the Cholesky factorization is inherently sequential.
In the FLAPW Method (Full Potential Linearized Augmented Plane Wave Method) – an electronic structure method
in solid state physics – the obtained generalized eigenvalue problem is of the form

A =
n

∑
k=1

Aast
k TkAk, B =

n

∑
k=1

Bast
k Bk,

where Tk are Hermitian and indefinite, and the matrices Aast
k and Bast

k are tall and skinny. Instead of explicitly
forming A and B, and then computing the generalized eigendecomposition, another approach is to transform the
problem into an implicit generalized eigenvalue problem, i.e., into a generalized SVD, of the following form

(A,B) := (FastJF,GastG),

with F and G that have approximately three times more rows than columns, and J = mdiag(pm1).
We show how to modify the Hari–Zimmermann method for the generalized eigenproblem to work in parallel
on A and B implicitly, i.e., not directly on the matrices A and B, but on their factors F , G, and J instead. The
parallelization approach has three stages. First, the matrices Tk are factored in parallel by the Hermitian indefinite
factorizations, revealing the sign matrix J. Then, the obtained factors are used to form F . Finally, the generalized
SVD of a pair (FastJF,GastG) is computed. As a preprocessing part of the last stage, the pair can optionally be
“shortened” to the one with square matrices by the (indefinite) QR factorizations.
#41: Asymptotic Quadratic Convergence of the Two-Sided Parallel Block-Jacobi SVD Algorithm
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gabriel Okša
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yusaku Yamamoto, Martin Bečka, Marián Vajteršic

We present the proof of the global and asymptotic quadratic convergence of the parallel two-sided block-Jacobi
SVD algorithm with dynamic ordering.
When dealing with the convergence analysis of any SVD algorithm, it is sufficient to consider only square matrices.
If an original matrix is of size m×n,m≥ n, one can compute first its QR decomposition and then apply the iterative
SVD algorithm to the square factor R of size n. The SVD of an original matrix can be then re-constructed in an
obvious way.
Let us divide a square matrix A of order n into a w×w block structure with w blocks in each block row (column).
Denote by AIJ the (I,J)th block of size ell× ell,ell = n/w. Hence, there are w(w−1) off-diagonal blocks in A.
In the parallel case, having p processors, the blocking factor w = 2p is chosen, so that each processor contains
two block columns of matrix A. Using the greedy implementation of dynamic ordering, p pairs of the off-diagonal
blocks with largest weights and disjunct block row and column indices are zeroed in each parallel iteration step
by a pair of appropriate orthogonal transformations, which are applied in each 2×2 block sub-problem. We show
that the off-diagonal Frobenius norm converges to zero quadratically in the asymptotic regime. Moreover, after
defining the scaled iteration matrices, where a suitable diagonal scaling is applied from both sides of iteration
matrices, we also show that the scaled off-diagonal Frobenius norm converges quadratically as well. Numerical
examples confirm the developed theory.
Acknowledgment: This work has been supported by the VEGA Grant no. 2/0004/17.
#42: A GPU variant of the implicit Hari–Zimmermann algorithm for the generalized SVD
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vedran Novaković
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Hari–Zimmermann algorithm is a Jacobi-type method for computing the generalized eigenvalue decomposi-
tion (GEVD) of a matrix pair (A,B), where both matrices are Hermitian, and B is positive definite.
If A and B are given implicitly by their factors F , J, and G, respectively, such that (A,B) = (FastJF,GastG), where
the matrix J = diag(pm1) holds the signs of the eigenvalues of A on its diagonal, then the GEVD of (A,B) can
also be computed implicitly, i.e., without assembling A and B in entirety from the factors, by a modification of the
Hari–Zimmermann algorithm.
More precisely, the algorithm can be converted to a method that jointly orthogonalizes the pairs of columns of
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F and G by a sequence of transformations that are applied only from one (right) side of the factors. Such a
one-sided algorithm computes U , ΣF , V , ΣG, and Z, such that FZ = UΣF and GZ = V ΣG, where U is J-unitary
(UastJU = J), V is unitary, and ΣF and ΣG are diagonal, real, and non-negative. In effect, the method implictly
computes the GEVD of (A,B), but explicitly (when J = I) the generalized singular value decomposition (GSVD) of
(F,G).
The recent work has shown that such method can be successfully blocked and parallelized for the CPUs with the
shared memory, and for the clusters of those. Even the sequential blocked version outperformed the LAPACK’s
GSVD algorithm, and the parallel ones exhibited a decent scalability.
On the other hand, an efficient blocked variant of a one-sided Jacobi-type algorithm for the “ordinary” and hyper-
bolic SVD has been developed for the GPU(s), that utilizes the GPU almost fully, with the CPU serving only the
controlling purpose.
This talk aims to merge the experience of those two approaches, and present a GPU-only parallel and blocked
variant of the implicit Hari–Zimmermann algorithm for the GSVD as an extension of the latter.
#43: Massively Parallel Polar Decomposition on Distributed-Memory Systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hatem Ltaief
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dalal Sukkari, Aniello Esposito, Yuji Nakatsukasa, and David Keyes

We present a high-performance implementation of the Polar Decomposition (PD) on distributed-memory sys-
tems. Building upon on the QR-based Dynamically Weighted Halley (QDWH) algorithm, the key idea lies in
finding the best rational approximation for the scalar sign function, which also corresponds to the polar factor for
symmetric matrices, to further accelerate the QDWH convergence. Based on the Zolotarev rational functions–
introduced by Zolotarev (ZOLO) in 1877– this new PD algorithm ZOLO-PD converges within two iterations even
for ill-conditioned matrices, instead of the original six iterations needed for QDWH. ZOLO-PD uses the property of
Zolotarev functions that optimality is maintained when two functions are composed in an appropriate manner. The
resulting ZOLO-PD has a convergence rate up to seventeen, in contrast to the cubic convergence rate for QDWH.
This comes at the price of higher arithmetic costs and memory footprint. These extra floating-point operations
can, however, be processed in an embarrassingly parallel fashion. We demonstrate performance using up to 102,
400 cores on two supercomputers. We demonstrate that, in the presence of a large number of processing units,
ZOLO-PD is able to outperform QDWH by up to 2.3X speedup, especially in situations where QDWH runs out of
work, for instance, in the strong scaling mode of operation.

MS 2.2.C CAB G 51 TASK-BASED PROGRAMMING FOR SCIENTIFIC COMPUT-
ING I

Chair: E. Agullo

#44: Exploiting Nested Task-Based Parallelism in the Factorization of Hierarchical Matrices
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enrique S. Quintana-Ortı́
Co-authors: . . . . . . . . . . Rocı́o Carratalá-Sáz, Sven Christophersen, Jose I. Aliaga, Vicenç Beltran, Steffen Börm

Hierarchical matrices (H-matrices) lie in-between the dense and sparse scenarios. Therefore, it is natural to tackle
the LU factorization of H-Matrices via a task-parallel approach, which has reported successful results in the recent
past for related linear algebra problems. Concretely, in this talk we leverage some recent features in the OmpSs-
2 programming model, such as support for weak operands and early release of dependencies, to considerably
improve the parallel efficiency when of H-LU factorizations arising from boundary element methods. Discovering
the data-flow parallelism intrinsic to the operation at execution time, via the analysis of data dependencies based
on the memory addresses of the tasks’ operands, is especially challenging for H-matrices, as the data structures
vary in dimension during the execution. We overcome this issue by decoupling the data structure from that used
to detect dependencies.
#45: High Performance Aynchronous Execution of the Reverse Time Migration for the Oil & Gas Industry

Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hatem Ltaief
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Issam Said, David Keyes

Task-based programming model is a promising alternative approach to remove artifactual synchronization points
seen in bulk synchronous programming model. We would like to leverage the performance of the Reverse Time
Migration (RTM) on GPU-based systems. By relying on a dynamic runtime system to schedule the various
tasks of the RTM (e.g., stencil computation kernel, Perfectly Matched Layer computations, I/O operations, image
condition calculations, etc.), the overall application translates into an out-of-order execution. This opens up new
opportunities to further overlap expensive and non-critical operations, such as I/O, with tasks which belong to the
critical path, such as high performance GPU stencil kernel computation during the forward/backward modeling.
Idle time is then reduced, while load balancing is achieved through work stealing on each node. To further
reduce the overhead of the I/O operations, numerical compression algorithms are investigated, in addition to the
asynchronous execution, to prevent from running in an out-of-core mode of operation for maximum occupancy on
GPU memory.
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#46: Limitations of OpenMP task-based parallelization to achieve high performance and create a robust
software design
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bérenger Bramas
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OpenMP is likely to become the most used interface to develop task-based applications in the HPC and scientific
computing communities. Using OpenMP provides multiple assets: it allows a low-dependency footprint, it is
portable across compilers and, because it is standard, it relies on consistent and stable definitions. Consequently,
its utilization provides important guarantees for long-term projects. On the other hand, the current OpenMP
standard and its numerous implementations suffer from limitations to achieving high performance and to write
clean and easy-to-maintain programs. These drawbacks come from the annotation system, the standard itself, or
the lack of specific features. However, high performance is usually an objective that is intended to be achieved at
all costs for many applications, and software design is increasingly less neglected as it is an asset that allows the
creation of projects that will be used for several decades, involving researchers from different fields, and executed
on constantly changing hardware. In this presentation, we will describe some of the limitations and performance
weaknesses, and describe their impact on code development with the objective to highlight situations where
this technology might not be the most appropriate. Among the targeted topics, we will focus on heterogeneity,
scheduling, dependency management, and hardware abstraction. We will also point out possible solutions that
exist in modern runtime systems to resolve most of these issues.
#47: qr mumps: a runtime based sparse direct solver for heterogeneous architectures
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alfredo Buttari
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emmanuel Agullo, Abdou Guermouche, Ian Masliah

qr mumps is a parallel, direct solver for sparse linear systems based on the multifrontal QR factorization. Paral-
lelism is achieved using a Sequential Task Flow (STF) programming model on top of the StarPU runtime system.
In this talk we will show how STF parallelism can be applied to a sparse, direct solver and how the use of a mod-
ern runtime system allows for the portable and efficient implementation of complex algorithms that can improve
its performance and scalability as well as its memory consumption. The effectiveness of this approach will be as-
sessed through experimental results on multicore, manycore (Intel Knights Landing) and hybrid (multicore+GPU)
platforms.
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MS 2.3.A CAB G 11 PARALLEL EIGENVALUE SOLVERS FOR LARGE SCALE
PROBLEMS II

Chair: E. Di Napoli

#48: FEAST using residual inverse iterations with applications
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eric Polizzi
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The FEAST eigensolver uses complex contour integration and subspace iterations to calculate the eigenvectors
whose eigenvalues that are located inside some user-defined region. The algorithm can be interpreted as a
generalization of shift-and-invert iterations that uses multiple shifts in the complex plane leading to an optimal filter
projector. In recent work (which includes the upcoming v4 of the software), the solver has been reimplemented to
make use of residual inverse iterations. Although, the new filter form is mathematically equivalent to the original
FEAST linear projector, it is numerically more efficient and more appealing in a number of new situations. We
will demonstrate the effectiveness of the FEAST residual inverse iterations for addressing: (i) the inexact inner-
outer iterative approach (IFEAST or FEAST without factorization), (ii) the mixed precision arithmetics iterative
procedure, and (iii) the non-linear eigenvalue problem.
#49: Block Krylov and Jacobi-Davidson methods on heterogenous systems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jonas Thies
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Melven Röhrig-Zöllner, Nigel Overmars, Dominik Ernst

Over the past five years we have developed two open source software packages called GHOST and PHIST
(https://bitbucket.org/essex/[ghost|phist). We discuss the software and performance engineering
techniques used when designing these libraries and show some examples of use.
GHOST provides optimized implementations of memory-bounded linear algebra operations on heterogenous
CPU/GPU systems. PHIST provides the software infrastructure for implementing iterative sparse matrix algo-
rithms in a portable and efficient way by introducing a kernel interface layer inspired by the message passing
interface (MPI). Implementations of the interface are verified using an extensive test suite and performance mod-
els. Going beyond the isolated optimzation of linear algebra kernels, phist allows algorithm-level performance
optimizations like kernel fusion and overlapping of communication and computation.
To make phist algorithms easy to integrate into existing applications, we provide implementations of the kernel
interface for various commonly used libraries such as Trilinos, PETSc and Eigen, and a Fortran+MPI reference
implementation. Besides the standard C interface, Pyton, C++ and Fortran bindings are automatically generated
for all functions.
We show how the new libraries can be used to boost the performance of existing implementations of Block Krylov
solvers in the Trilinos package Anasazi, and present results for our own implementation of the block Jacobi-
Davidson QR method applied to model problems from quantum physics.
#50: A Golub-Kahan Davidson Method for Accurately Computing a Few Singular Triplets of Large Sparse
Matrices
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andreas Stathopoulos
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eloy Romero

Obtaining high accuracy singular triplets for large sparse matrices is a significant challenge, especially when
searching for the smallest triplets. Due to the difficulty and size of these problems, efficient methods must function
iteratively, with preconditioners, and under strict memory constraints. In this research, we present a Golub-Kahan
Davidson method (GKD), which satisfies these requirements and includes features such as soft-locking with
orthogonality guarantees, an inner correction equation similar to Jacobi-Davidson, locally optimal +k restarting,
and the ability to find real zero singular values in both square and rectangular matrices. Additionally, our method
achieves full accuracy while avoiding the augmented matrix, which often converges slowly due to the difficulty of
interior eigenvalue problems. We describe our method in detail, including implementation issues that may arise.
Our experimental results confirm the efficiency and stability of our method over the current implementation of
PHSVDS in the PRIMME software package.
#51: Combining Refined and Harmonic Rayleigh-Ritz for Interior Hermitian Eigenvalue Problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eloy Romero Alcalde
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Andreas Stathopoulos

Challenging large-scale interior eigenvalue problems appears in interesting physics models, e.g., in first-principle
electronic structure analysis and quantum chromodynamics simulations. Conventional ways to tackle interior
problems are based on rational filters, when the matrix problem factorization is affordable, and preconditioning
methods (Generalized/Jacobi-Davidson and LOBPCG), for certain classes of eigenproblems that an efficient
preconditioner is available. It is an open question how competitive are these methods without a factorization or a
preconditioner.
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This work summarizes our recent efforts on the methods used for computing the approximate eigenpairs in a sub-
space. These methods drives the convergence of preconditioning eigenmethods and have an important impact
on the performance of Generalized Davidson and LOBPCG with poor preconditioners or unpreconditioned. We
discuss the issues in terms of convergence and parallel performance presented in the standard approaches such
as Harmonic and refined Rayleigh-Ritz together with the advanced refined harmonic approach introduced by Jia.
Also we propose a heuristic to detect and address the problematic situations. The resulting method combines
refined and harmonic, and as we show experimentally on large Hermitian problems, is more robust than the stan-
dard approaches and exhibit better parallel performance than Jia’s methods, especially in combination with block
methods.

MS 2.3.B CAB G 61 PARALLELIZATION ASPECTS OF SVD AND EVD COMPU-
TATIONS II

Chair: G. Okša

#52: New preconditioning for the parallel one-sided block-Jacobi SVD algorithm
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Martin Bečka
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gabriel Okša

Parallel implementation of the one-sided block-Jacobi SVD algorithm (OSBJ) appeared to be an alternative to the
PDGESVD procedure of ScaLAPACK. Recently we presented a new preconditioner for OSBJ in serial case. Since
there are fast procedures for eigenvalue decompostion and matrix multiplication in LAPACK/BLAS, one can apply
OSBJ to the matrix AV1 instead of A, where V1 is the orthonormal matrix of eigenvectors of AT A. Columns of AV1
should be more orthogonal than the columns of A. In finite arithmetic, level of their orthogonality depends on the
2-norm condition number κ(A). Our serial preconditioned OSBJ was significantly faster than DGESVD as well as
DGESVJ (Jacobi SVD from LAPACK) and also faster than DGESDD (divide and conquer SVD) in the case of small
κ(A). So a proper parallel implementation of this approach has a potential to overcome PDGESVD. We describe
the approach in more detail and give experimental results.
#53: Parallel reduction of four matrices to the condensed form for a general matrix eigenvalue algorithm
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The VZ algorithm proposed by Charles F. Van Loan (SIMA, 1975) is a QR-type process for the solution of the gen-
eral matrix eigenvalue problem ACx = λBDx, where A,B ∈Rn×m, C,D ∈Rm×n, and m≥ n. Especially, this algorithm
is suitable for solving the generalized singular value problem AT Ax = µ2BT Bx. Transforming the general eigen-
value problem to the standard form (BD)−1(AC)x = λx represents a possible numerical danger, since formation of
the products AC and BD, as well as formation of the inverse (BD)−1 can produce a result with a large backward
error. Thus, the VZ algorithm attempts to solve the problem without forming these products and inverse. This
approach transforms each of the four matrices separately into a suitable form, which is a generalization of the
Schur decomposition. Actually, the algorithm computes orthogonal matrices Q,U ∈ Rn×n and V,Z ∈ Rm×m such
that QAZ is upper quasi-triangular, and QBV , ZTCU and V T DU are upper triangular. The VZ algorithm begins by
reducing the matrices A, B, C, and D to an equivalent condensed form by the finite step initial reduction. This
reduction finds orthogonal matrices Q0, U0, V0 and Z0, such that Q0AZ0 is upper Hessenberg, and Q0BV0, ZT

0 CU0
and V T

0 DU0 are upper triangular. Then, the VZ iterations are applied to the matrices in the condensed form. In
the initial reduction, A is reduced to the upper Hessenberg form, while simultaneously preserving triangularity
of the other three matrices. This is done by the Givens rotations, annihilating one by one element of A, and by
generating three more rotations applied to the other matrices per each annihilation. Such an algorithm is quite
inefficient. In our work, we propose a blocked algorithm for the initial reduction, based on the aggregated Givens
rotations and matrix–matrix multiplications, which are applied in the outer loop updates. This algorithm has an-
other level of blocking, exploited in the inner loop. Further, application of a sequence of the rotations in the inner
loop is parallelized, with balanced operation count per thread. Since a large number of aggregated rotations is
produced in every outer loop step, they are simultaneously accumulated before the outer loop updates. We also
consider a variant of the algorithm in a hybrid CPU–GPU framework, where the compute-intensive outer loop
updates are performed on GPU, and can be overlapped with the reduction in the next step performed on CPU.
This adjustments speed up the original initial reduction considerably, and the efficiency of the whole VZ algorithm
is increased.
#54: A Parallel Generator of Non-Hermitian Matrices Computed from Given Spectra
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xinzhe Wu
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serge G. Petiton

Iterative or restarted linear algebra methods are the important parts of the global computing time of applications
in various fields since decades, and the recent acceleration of researches associated with social networks, big
data, machine learning and artificial intelligences increase the necessity of Non-Hermitian solvers associated with
larger and larger sparse matrices. The convergence of the numerical linear system resolution and eigenvalue
problem analysis of such problems is complex, and it is necessary to evaluate the convergence of iterative or
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restarted methods to solve extremely large Non-Hermitian eigenvalue and linear problems on parallel and/or
distributed machines. This convergence depends on the properties of spectra. Then, it is crucial to have large
sets of matrices to test on these large-scale machines. These matrices should be generated with four special
characteristics: 1) their spectra must be known and can be easily controlled; 2) they should be non-Hermitian and
non-trivial; 3) they could have a very high dimension, including the non-zeros elements and/or the matrix size to
evaluate on large-scale systems; 4) they should be sparse and the sparsity patterns must be controllable. In this
talk, we present a method to generate sparse matrices from a given spectrum and matching some mathematical
and shape properties. It is a scalable parallel matrix generator which uses the given spectra by users to build
large-scale band matrices and to ensure their eigenvalues to be the given ones with high accuracy. The complexity
of this method is O(hdn) with n the dimension of matrix, h and d two parameters to define its bandwidth proprieties.
The worst case would be an O(n3) problem for operations with large h and d, and it would require O(n3) memory
storage. But if we want to generate a band matrix with h and d much smaller than the matrix dimension n, it
turns to be an O(n) problem with good potential scalability and to consume O(n) memory storage. Since it is
generated in parallel, the different parts of this matrix are already distributed on different computing units, it can
be used directly to evaluate the parallel numerical method without concerning the I/O operations. This generator
is firstly implemented both on CPUs and GPUs based on the PETSc, MPI, and CuSPARSE. Then an open source
package SMG2S (Scalable Matrix Generator from Given Spectra) with specific communication optimized kernels
based on MPI is also implemented. Strong and weak scaling performance of the different implementations is
compared on top of the supercomputers TIANHE-2 in Guangzhou, China, and ROMEO in Reims, France. In
order to verify its ability to keep the given spectra, we propose a check method based on the Shifted Inverse
Power method. Good accuracy results are obtained by the verification experiments with the clustered spectrum,
the closest eigenvalues, etc. Finally, we give an example which uses the SMG2S package to evaluate the GMRES
method for solving non-Hermitian Linear Systems.
#55: Spectrum slicing in quadratic symmetric eigenvalue problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jose E. Roman
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carmen Campos

In the linear symmetric-definite generalized eigenvalue problem it is possible to calculate all the eigenvalues con-
tained in a given interval using the technique known as spectrum slicing citeCampos:2012:SSS. This technique is
based on using the inertia concept to determine how many eigenvalues are located to the left of various selected
points in the interval. At each point it is necessary to calculate a factorization and a Lanczos recurrence.
This scheme can be extended for quadratic eigenvalue problems with certain properties, for which the inertia
can be computed [2]. In the case of definite quadratic eigenvalue problems (of which hyperbolic problems are a
particular case), it is possible to form a symmetric-definite linearization Ax = lambdaBx, whose eigenvalues are
all real [3]. Then, the spectrum slicing idea can be applied, provided that either A or B are positive definite. But
getting a definite pair with this property may not be easy for large-scale problems [3]. An alternative is to adapt
the spectrum slicing scheme to work with an indefinite pencil. In that case, the pseudo-Lanczos method must be
used [4].
Preliminary results will be shown with an implementation in SLEPc [5]. This solver combines the pseudo-Lanczos
iteration tailored for quadratic eigenproblems, with the computation of quadratic inertia in a spectrum slicing
fashion.
Acknowledgements: Ministerio de Econom’ia y Competitividad under the project TIN2016-75985-P, as well as by
European Commission FEDER funds.
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#56: Task-Based Sparse Direct solver for Symmetric Indefinite Systems
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Many applications in science and engineering require the solution of large sparse linear systems of equations.
For solving such problems, direct methods are frequently employed because of their robustness, accuracy and
usability as black-box solvers.
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As modern architectures become more and more complex, with an increasing number of cores per chip, a deeper
memory hierarchy and the integration of accelerators such as GPUs, it becomes all the more challenging to
exploit the potential performance of such machines for sparse matrix factorization algorithms especially in the
context of symmetric indefinite systems. Although significant efforts has gone into positive-definite systems, little
progress has been reported in the much harder indefinite case. One major advance for tackling these problems is
the design of the APTP (a posteriori threshold pivoting) strategy that has been implemented in the SSIDS solver
and proven to be both efficient on multicore architectures compared to the state-of-the-art direct solvers.
In this talk, we present the DAG-based solver SpLDLT that relies on a APTP strategy and uses the StarPU runtime
system for implementing it parallel version. We show the benefits of our approach for exploiting heterogeneity in
the the context of GPU-accelerated multicore systems.
#57: Design and analysis of a fully task-based application on modern HPC platforms: case study with a
seismic kernel
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Modern computing platforms are built from highly parallel processors and heterogeneous devices such as Graph-
ics Processing Units and Many Integrated Cores. Moving forward to exascale platforms, estimations indicate that
typical computing nodes will contain up to O(1000) cores. However, to fully take into advantage this large amount
of computational power, a profound shift on the implementation of numerical applications has to be performed.
Indeed, harnessing such systems usually implies mixing several programming paradigms, following the classi-
cal MPI+X approach. In this case, X can be OpenMP, Intel TBB, CUDA or OpenCL, and used for addressing a
single computing node, whereas MPI is used for managing communications through the network interconnect.
Task-based approach coupled with a generic runtime system is an emerging programming paradigm that greatly
improves programmer productivity, leaving him to focus on the algorithm and computational kernels implemen-
tation. Following this trend, our goal in this work is to study the design and implementation of efficient scientific
applications capable to scale at high core count and whose performances are portable across a large number
of hardware architectures. From this perspective, we considered a task-based programming model coupled with
PaRSEC, a generic task-based runtime system targeting distributed heterogeneous architectures. Such an ap-
proach allows to isolate the major concerns arising in scientific computing: the algorithm definition, the data
distribution and the development of computational kernels. We present an end-to-end task-based algorithm for
the seismic wave propagation including the time-step dependency within tasks definition. The algorithm data-flow
contains seven types of tasks, characterized by different arithmetic intensities. Therefore, to improve the tasks
scheduling, we theoretically evaluated the task priorities according to both its computational workload and its
distance to tasks belonging to the critical path. To highlight the benefit of our design choices, we conducted an
in-depth analysis of the impact of prioritizing tasks on the implementation performance. We present a strong
scaling study on both shared and distributed memory platforms.
#58: DPLASMA: dense linear algebra package for distributed heterogeneous systems
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#59: Towards Distributed Tasking in the PLASMA Numerical Library
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PLASMA (Parallel Linear Algebra Software for Multicore Architectures) is an established numerical linear alge-
bra library for shared memory multicore and manycore architectures. Since its origins around 2007, PLASMA
has been an early adopter of the task-based programming model. The recent tasking features of the OpenMP
standard have been introduced in the latest version of the library.
Due to the limitation of OpenMP to shared memory architectures, we have recently explored different runtime
systems with support for distributed tasking. In particular, we have ported PLASMA to the StarPU runtime as well
as to the recent Dynamic Task Discovery interface of PaRSEC with a minimal intrusiveness to the shared memory
version.
In this talk, we summarize our experience with using these two task-based programming libraries and discuss
preliminary performance results.
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#60: Preconditioning Algebraic Optimized Schwarz Methods for Black-Scholes Partial differential Equa-
tions
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In this paper we investigate the numerical solutions of the Black-Scholes partial differential equations. We are in-
terested in solving the Option Pricing Model using the Algebraic Optimized Schwarz domain decomposition meth-
ods (AOSM). We will consider the European Vanilla Call and Put Options. Both semi and full implicit schemes in
time will be considered. At each time step we will have to solve large-scale linear systems. The AOSM methods
will be used as preconditioners to approximate the solutions of the obtained linear systems. The main idea of
AOSM methods is based on replacing the classical transmission blocks by adequate blocks obtained from the
neighbor sub-domains. The convergence of the optimal AOSM method in the case of two sub-domain decomposi-
tion is in two iterations for the present model. We will present also variants of the AOSM methods corresponding
to different approximations of the transmission blocks. To accelerate the numerical computations we will the
approximation of the transmission blocks will be computed using GPU computing. Numerical evidences show
tremendous gain in timing when adopting the graphical computing.
#61: Projector-avoiding TFETI for contact problems implemented in the PERMON toolbox
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Co-authors: . . . . . . . . . . Zdenek Dostal, Vaclav Hapla, Jakub Kruzik, Radim Sojka, Martin Cermak, Marek Pecha

The original FETI-1 (Finite Element Tearing and Interconnecting) method proposed by Farhat and Roux turned
out to be a very powerful method for the parallel solution of problems described by elliptic PDEs. It is numerically
scalable thanks to projectors onto the kernel of the natural coarse space. The authors proved later theoretically
the bounds on the spectrum in terms of the ratio of the decomposition and discretization parameters.
The Total-FETI (TFETI) method developed by Dostal et al. uses Lagrange multipliers to enforce Dirichlet boundary
conditions. This enables simpler assembly of the stiffness matrix kernel since for each subdomain it can be
formed directly from the subdomain rigid body modes. The decomposition into a larger number of subdomains
not only improves the bounds (and therefore reduces the number of solver iterations) but also reduces the time
of stiffness matrices factorizations and their subsequent solve functions. However, the negative effect is an
increase of the coarse problem (CP) size hidden in the projector application, so that the factorization of the CP
matrix and subsequent solves become a bottleneck of the overall parallelization. Solving large CPs gets very
complicated for tens or hundreds of thousands of subdomains, even if the best techniques are employed, e.g.
parallel direct solvers (MUMPS, SuperLU DIST) on sub-communicators or the HTFETI method, reducing the CP
size by aggregating a small number of neighbouring subdomains into clusters.
Quadratic programming problems resulting from applying the TFETI method to variational inequalities can be
solved by the MPRGP (Modified Proportioning with Reduced Gradient Projections) algorithm and SMALBE (Semi-
Monotonic Augmented Lagrangian algorithm for Bound and Equality constraints) algorithm, both developed by
Dostal. These algorithms have the rate of convergence given by the bounds on the spectrum of the Hessian ma-
trix. This operator contains three projector applications that can be implemented using two CP solutions. In combi-
nation with TFETI, these algorithms were proved to enjoy both numerical and parallel scalability. These quadratic
programming algorithms and FETI methods are implemented in our software package based on PETSc called
PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) toolbox [http://permon.vsb.cz].
This presentation deals with the modification of the TFETI method eliminating projectors applications including
CP solution while preserving the numerical scalability. Crucial for this achievement is a possibility to use the
Moore-Penrose pseudoinverse of the stiffness matrix. This modification is obtainable through the projection of
a generalized inverse onto the range of the stiffness matrix. This operation is purely local and very cheap. The
CP solution contained in the penalized term of the Hessian of the quadratic programming problem ensuring the
homogenized equality constraint satisfaction can be solved inexactly, which corresponds to the multiplication of
homogenized equality constraints by some transformation matrix. An effect of various transformations of the
equality constraints will be analysed. The performance of this new approach will be demonstrated by numeri-
cal experiments. Our tests of the projector-avoiding method show about 1.7 speedup over standard TFETI on
problems with more than 1.25 billion of unknowns computed on up to 15,625 cores.
#62: Parallel solution of sparse linear systems to find the shortest path in large scale graphs
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Solving the shortest path problem on large scale networks is crucial for many applications. As parallelism became
more common with the advent of multi-core architectures as well as large and complex networks have begun to
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emerge in many settings, it is inevitable to come up with algorithms that take advantage of the current archi-
tectures. One alternative to solve the shortest path problem is to use one of the classical or improved parallel
variations of the Dijkstra’s algorithm. However, when the size of the network becomes large, finding the shortest
path requires excessive computational time. Recently, some bio-inspired methods to find the shortest path have
been proposed, such as Genetic algorithms, Ant Colony Optimization, Swarm Systems, and Physarum Solver.
Physarum Solver is capable of finding the shortest path in a labyrinth and is developed by modelling the behavior
of Physarum Polycephalum, which is an amoeba-like organism. Physarum Solver has been applied in many
applications recently. It can efficiently solve a variety of network optimization problems such as the traveling
salesmen problem, the vehicle routing problem, and scheduling of multi-gravity assist trajectories and various
optimization problems required linear programming. However, earlier studies provide only sequential variants of
Physarum Solver.
In this study, a parallel and scalable Physarum Solver is proposed with the objective to find the shortest path for
static graphs with positive edge weights. The proposed scheme is applied on both large scale realistic and real
world static graphs as well as dynamically changing graphs. Physarum Solver requires the solution of the linear
systems whose coefficient matrix is an M-matrix at each iteration. This step is the most time consuming step
especially for problems having excessive data or information size. However, Physarum related studies in the liter-
ature do not take advantage of M-matrix property of the coefficient matrix to solve the linear systems in Physarum
Solver. They use a direct method to solve such systems, which is infeasible for large scale problems with several
millions of unknowns. A parallel preconditioned iterative method for solving prementioned sparse linear systems
is presented. The proposed preconditioner is specifically designed based on the properties of the coefficient
matrix of those linear systems, and the effectiveness of the proposed preconditioner is compared against other
state-of-the-art preconditioners on dynamic graphs. Furthermore, the proposed dynamic algorithm is designed to
be suitable for dynamically changing graphs since it uses the information arising in earlier iterations. The parallel
scalability as well as the effect of changing the edge weights to the time to solution are evaluated for each graph
model, separately and compared against a state-of-the-art parallel implementation of the Dijkstra’s algorithm on
a parallel multicore cluster. In contrast to the classical shortest path algorithms, the proposed scheme has a dis-
tinct advantage that it is using array based data-structures and optimized kernels which take advantage of today’s
multi level cache hierarchies. Our implementation exhibits remarkable speedups with comparable accuracy for
synthetic and real-world applications.
#63: Numerical Methods and Parallel Algorithms for Fractional Diffusion Problems
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We consider fractional powers of self-adjoint elliptic operators. The case of power α ∈ (0,1) is related to super-
diffusion. In what follows we assume the definition based on spectral decomposition of the elliptic operator.
The same approach is applied to define fractional powers of SPD matrices. In a general setting, the numerical
solution of such nonlocal problems is rather expensive. The following four approaches lead to transformation of
the equation Lαu = f to some auxiliary local problem(s) in a computational domain of higher dimension: (A1)
Extension to elliptic problem in a semi-infinite cylinder [2]; (A2) Transformation to a pseudo-parabolic problem [6];
(A3) Integral representation of the solution [1]; (A4) Best uniform rational approximation - BURA [4].
New efficient solvers for the linear system Aαu = f, 0 < α < 1, are proposed in [4], where A is a normalized
symmetric and positive definite (SPD) matrix generated by finite element or finite difference approximation of the
self-adjoint elliptic operator L . Instead of the original problem, the system Aα−βu = A−βf:= F, β ≥ 1 - integer, is
considered. Then Aβ−αF is approximated by a set of solutions of systems with A +d jI , d j ≥ 0, j = 1, . . . ,k, where
k≥ 1 is the number of partial fractions of BURA rβ

α(t) of tβ−α, t ∈ (0,1]. From algorithmic point of view, the methods
(A3-A4) are very similar. This holds true for their parallel implementation as well. Comparing the accuracy, some
advantages of the BURA methods are observed. This is stronger expressed for stronger super-diffusion.
The parallel implementation makes the fractional diffusion models more feasible and practically applicable. The
parallel efficiency requires appropriate algorithms. The selection of best fitted solutions needs extended scalability
analysis on the targeted parallel architectures. First scalability study of parallel algorithms for methods (A2-A3)
is presented in [3]. Not surprisingly, better strong scalability is reported for the second method. In this case, the
algorithm is based on a two-level parallelization template. At the first level, a number of independent local (sparse)
subproblems are solved, while at the second level, parallel multigrid solvers are employed for each subproblem.
Parallel scalability results for BURA are presented in [4]. A more involved performance analysis on Intel Xeon Phi
towards scalability for extreme scale problems is provided in [5]. The last part of the talk is devoted to analysis of
parallel efficiency accounting for the targeted accuracy.
The partial support by Grant No. BNSF-DN12/1 is acknowledged.
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CP 3.1.B CAB G 61 KRYLOV SPACE METHODS Chair: D. Gordon
#64: Parallel performance and numerical stability of communication-hiding Krylov subspace methods
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Siegfried Cools
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jeffrey Cornelis, Pieter Ghysels, Wim Vanroose

Krylov subspace methods are frequently used as efficient iterative solution methods for large scale linear systems
occurring in a variety of HPC applications. A clear trend in current (petascale) and future (exascale) HPC hard-
ware is the continuous up-scaling of the number of parallel compute nodes. The performance of Krylov subspace
methods on these massively parallel systems is hence limited by global synchronizations and communication la-
tency (stemming from the calculation of dot-products in the algorithm) rather than the floating point performance
for which they were primarily optimized in the past.
Several possible communication reducing alternatives to classic Krylov subspace methods have (re-)gained sig-
nificant attention over the past years. These include the class of s-step Krylov subspace methods [1] that aim to
reduce the number of global synchronization bottlenecks in the iteration. In addition to “avoiding” communication,
another approach to improve parallel scalability is to overlap time-consuming global reduction phases with useful
(local) computations, thus reducing the impact of communication latency and decreasing the total time to solution.
The latter technique has been implemented in the so-called pipelined Krylov subspace methods [2–4], in which
global communication latency is “hidden” behind SPMVs and local vector operations.
Although it has been shown that these re-engineered communication-reducing Krylov subspace methods indeed
offer improved parallel scalability [2,3,5], this performance gain often goes hand in hand with reduced numerical
stability. Pipelined Krylov subspace methods, for example, use multi-term recurrence relations to compute the
auxiliary variables required to construct the ‘pipeline’; and overlap global communication. Theoretically, i.e. in
exact arithmetic, pipelined methods produce a series of iterates that is identical to the traditional Krylov sub-
space iterates. However, in a practical finite precision setting the propagation of local rounding errors may affect
numerical stability significantly.
In this talk we give an overview of the design, performance and numerical properties of communication-hiding
pipelined Krylov subspace methods. We focus specifically on pipelined CG methods [3,4] to illustrate our ap-
proach. A numerical stability analysis explains the loss of maximal attainable accuracy that is observed in
pipelined Krylov subspace methods [6,7]. Based on this analysis possible countermeasures to increase numer-
ical stability – while aiming to retain the improved the parallel scalability obtained by pipelining – are suggested.
Numerical accuracy and parallel performance experiments demonstrate the practical use of the analytical results.

[1] E. Carson, N. Knight, and J. Demmel. Avoiding communication in nonsymmetric Lanczos-based Krylov subspace
methods. SIAM J. Sci. Comput., 35(5):S42–S61, 2013.

[2] P. Ghysels, T.J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication latency in the GMRES algorithm
on massively parallel machines. SIAM J. Sci. Comput., 35(1):C48–C71, 2013.

[3] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm.
Parallel Computing, 40(7):224–238, 2014.

[4] J. Cornelis, S. Cools, W. Vanroose. The communication-hiding Conjugate Gradient method with deep pipelines. SIAM
J. Sci. Comput. (submitted). Preprint available at: https://arxiv.org/abs/1801.04728.

[5] P.R. Eller and W. Gropp. Scalable non-blocking preconditioned Conjugate Gradient methods. In SC16: Int. Conf. for
HPC, Networking, Storage and Analysis, pages 204–215. IEEE, 2016

[6] S. Cools, E.F. Yetkin, E. Agullo, L. Giraud, and W. Vanroose. Analyzing the effect of local rounding error propagation on
the maximal attainable accuracy of the pipelined Conjugate Gradient method. SIAM J. Mat. Anal. Appl., 39(1):426–450,
2018.

[7] S. Cools. Numerical stability analysis of the class of communication hiding pipelined Conjugate Gradient methods.
SIAM J. Sci. Comput. (submitted). Preprint available at: https://arxiv.org/abs/1804.02962.

#65: Fast estimation of statistical leverage scores by block iterative methods and randomization
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aleksandros Sobczyk
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efstratios Gallopoulos

We describe recent algorithms for estimating the statistical leverage scores and coherence of full rank matrices.
These measures are of importance in large scale data mining, graph analytics and machine learning applications.
The algorithms use the orthogonal projector “hat matrix”; and are based upon an efficient preconditioned block
conjugate gradient solver, supercharged by state-of-the-art stochastic techniques from randomized numerical
linear algebra. We use these techniques to build effective preconditioners, to enable the reduction of the number
of right-hand sides in the block method, and to prove probabilistic upper bounds for the error of the computed
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solutions. The algorithms are well suited for tall and thin sparse matrices and their dominant kernel is matrix
multiplication. We present implementations and evaluate their performance on parallel and distributed platforms
using real world and synthetic datasets and show that they are competitive with other state-of-the-art methods.
#66: Application of deflated Newton-Krylov methods to the problem of finding bifurcation points
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Michiel Wouters
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wim Vanroose

In numerical continuation of the steady states of large scale dynamical systems one is often interested in finding
bifurcation points. These are points along the curve where the Jacobian of the equation is singular. Classic
Newton methods like Newton-Krylov, the method of choice under normal circumstances, are strongly hampered
by the singularity of the Jacobian at the bifurcation point. Certainly in cases where multiple eigenvectors with
zero eigenvalues exists in this point. Adapting these methods with a deflated decomposition or a line-search may
improve the convergence properties in some cases. However, in practice the resulting algorithms are often still
too slow or do not converge up to a desired tolerance.
In the current talk further adaptations and refinements of the deflated Newton-Krylov method are investigated,
based on splitting the update vector into a part that lies in the Jacobians range, and parts that correspond
to approximate zero eigenvectors. If the line-search algorithm is only applied to certain parts of the vector,
convergence often improves. In order to effectively apply the techniques on the bifurcation problem, it is required
to provide them in combination with block elimination routines as well, which will be illustrated in the presentation.
Examples from pattern formation in superconductors are used as illustrations of the methods.
#67: Some recent results on accelerated parallel projection methods
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dan Gordon
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rachel Gordon, The Technion–I.I.T.

We present some inter-related results on accelerated parallel projection methods. The first result is called the
Cimmino-Kaczmarz Equivalence, meaning that the Cimmino algorithm, which consists of projections and vector
averaging, is equivalent to the Kaczmarz algorithm (which uses only projections) in some superspace of the
problem space. The practical consequence of this is that in the CARP-CG algorithm [G & G, PARCO 2010],
the internal Kaczmarz processing of the subdomains can be replaced by Cimmino, which is more amenable to
fast computing on a GPU. The Kaczmarz-Cimmino equivalence implies a formal convergence proof for such a
modification. This result is quite general, allowing different relaxation parameters to be used in the Cimmino
algorithm.
A second result concerns the CGMN algorithm [Björck & Elfving, BIT 1979] and its block-parallel version CARP-
CG. Both are examples of the Kaczmarz algorithm accelerated by CG, as follows: by running Kaczmarz in
a forward and backward sweep, the resulting iteration matrix is symmetric and positive semi-definite, so the
process can be accelerated by CG. Kaczmarz is, in fact SOR ran on AAT , where A is the normalized system
matrix. Although the use of AAT is generally not recommended (because its condition number is the square of
the condition number of A), it has been shown in previous work that after A is normalized, the diagonal elements
of AAT are all 1, and the off-diagonal elements are ¡ 1. Our new result uses two model problems – a convection-
dominated elliptic PDE and a high-frequency Helmholtz equation – to demonstrate that when a certain problematic
parameter increases, the maximal off-diagonal element of a row of A increases unboundedly w.r.t. the diagonal,
while in AAT , the maximal off-diagonal element remains well-bounded below the diagonal . The ”problematic
parameter” is the size of the convection term in the elliptic PDE, and the frequency in the Helmholtz equation.
A third result concerns a major issue in domain decomposition (DD): the problem of eliminating inaccuracies
caused by integrating the subdomain solutions across subdomain boundaries. An even harder problem arises in
the case of cross points, at which three or more subdomains meet. This topic has received a lot of attention in
recent years, with several problem-specific solutions. It is shown, and formally proved, that these problems do
not exist with the CARP-CG algorithm. This is due to the fact that in CARP-CG, both the local processing and the
merging of the local solutions are actually solved in a certain superspace in a unified manner. Furthermore, there
is no need for any problem-specific adaptation. The concept of component-averaged DD (CADD) generalizes
CARP-CG by allowing the use of other methods – besides Kaczmarz or Cimmino – for the internal processing in
the subdomains. Sufficient conditions for the convergence of a CADD method are discussed.

CP 3.1.C CAB G 51 MIXED PRECISION AND LIBRARIES Chair: A. Basermann
#68: AVX2 acceleration of SpMV and vector operations with Double-double precision vectors
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hidehiko Hasegawa
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High precision arithmetic operations reduce rounding errors and may improve the convergence of iterative meth-
ods, however high precision arithmetic operations are difficult to implement and costly. Double-Double (DD)
precision arithmetic, one of high precision arithmetic, is easy to implement but still costly.
We developed a library, called “DD-AVX”, which includes DD precision vector and double precision sparse matrix
operations accelerated by SIMD AVX2. In many situations, a coefficient matrix A is given in double precision
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and used without modification during iterative process. Restricting a coefficient matrix in double precision, we
can reduce memory consumption and the number of arithmetic operations. The number of bytes per flop is also
improved.
As results, the computation time of multiplication of a double precision matrix and DD vector becomes about 2/3
times that of DD matrix and DD vector, and about 1.3 times that of both in double precision. The ratio may depend
on the structure of sparse matrices.
In this talk, we introduce the interface of “DD-AVX” and a performance result of mixed precision arithmetic opera-
tions.
#69: The Sparse Matrix Multiplication DBCSR library
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alfio Lazzaro
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jürg Hutter, Ilia Sivkov

Multiplication of two sparse matrices is a key operation in the simulation of the electronic structure of systems con-
taining thousands of atoms and electrons. The highly optimized sparse linear algebra library DBCSR (Distributed
Block Compressed Sparse Row) has been specifically designed to efficiently perform such sparse matrix-matrix
multiplications. The library is designed to efficiently perform block-sparse matrix-matrix multiplication of matrices
with a relatively large occupation. This library is the basic building block for linear scaling electronic structure
theory and low scaling correlated methods in CP2K framework. It is parallelized using MPI and OpenMP, and
can exploit GPU accelerators by means of CUDA. It is written in Fortran and is freely available under GPL license
at github.com repository. Here we introduce the library implementation and parallelization strategies. In partic-
ular, we will describe a communication-reducing algorithm for multiplications involving rectangular and square
matrices. We also present performance results where the tests are performed within the CP2K package with
application benchmarks. These tests imply multiplication of square and rectangular sparse matrices with different
sparsity values and matrices sizes. Finally, we will compare the performance with other scientific packages for
multiplication of dense and sparse matrices.
#70: Alien: a Flexible Wrapper API on Linear Solvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cédric Chevalier
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sylvain Desroziers, Jean-Marc Gratien, Pascal Havé, Xavier Tunc

We present our work on software engineering for numerical simulations codes and linear solvers libraries. By
taking the same path that has conducted to design the C++ framework Arcane for our simulation codes, we ended
up to create a new API, Alien, to interact with linear solvers libraries. We will describe its key design concepts
and will then discuss how it can be extended to also become a framework to benchmark linear algorithms and
libraries.
Writing large parallel distributed codes to compute complex physical phenomena is notariously a difficult task.
However, several approaches have emerged to improve developer productivity, essentially by using abstract
description of the parallelism wished by the programmer and then by generating all the supporting layer. For
example, our application developers use a C++ framework named Arcane that provides basic utilities (Array,
String, Mesh), application management (Time loop, IO) and parallel abstraction (Parallel Manager). When us-
ing distributed memory programming, Mesh data structure is naturally distributed accross MPI processes and
code developer does not have to call any MPI function: high level functionalities provided by Arcane are suffi-
cient. . . Except when dealing with linear Algebra.
Application developer was on his own to interact with linear solver libraries. He has to:
• deal directly with data distribution and MPI calls;
• implement specific data structures for each library;
• identify what functionalities are available in each library.

Furthermore, we had to satisfy more functionalities:
• user wants to be able to switch between linear solvers and algorithms, if possible at run time;
• application code must be independent of a specific linear solver;
• complex assemblies that occur in tightly coupled multi-physics codes must be handled easily and efficiently.

Whereas PETSc or Trilinos already provide access to a wide range of solvers and libraries, their approaches are
still mostly “solver oriented”, and deeply linked with the implementations.
Our answer is Alien, a C++ wrapper over linear solver libraries: we do not implement any solver, we just provide
access to external solvers. Its key design concept is the notion of multi representations. For example, a Matrix is
an object that can have several representations/implementations we can choose dynamically.
We will present and justify our design choices:
• we use simple objects for each functionality (in the spirit of UNIX KISS philosophy);
• functional extension is done by adding new objects;
• how we ensure that objects are used in a coherent way;
• API is designed to be asynchronous.

We will also discuss how Alien has allowed us to add high level functionalities, to all external solvers, such as
data redistribution, to be able to exploit only specific computing resources for linear computations.
This made us realize that even if Alien was primarily designed for numerical simulation developers, it might also be
used in other ways. For example, the linear solver community can see it as a mean to share an advanced bench-
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marking framework. Several solvers can be accessed from a common API and we can easily switch between
algorithms and libraries to compare. Currently, we have already plugged (part of) Hypre, PETSc, Trilinos, MTL4,
but we are willing to continue with other solvers.
#71: Mixed-Precision In-Memory Computing
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Costas Bekas
Co-authors: . . . . . Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers, Tomas Tuma,
Alessandro Curioni, Evangelos Eleftheriou
As the CMOS scaling laws break down because of technological limits, a radical departure from the processor-
memory dichotomy is needed to circumvent the limitations of today’s computers. In-memory computing is a
promising concept in which the physical attributes and state dynamics of nanoscale resistive memory devices
organized in a computational memory unit are exploited to perform computational tasks with collocated memory
and processing. However, device variability and non-ideal device characteristics pose technical challenges to
reach the numerical accuracy usually required in practice for data analytics and scientific computing. To resolve
this, we propose the concept of mixed-precision in-memory computing that combines a von Neumann machine
with a computational memory unit in a hybrid system that benefits from both the high precision of digital com-
puting and the energy/areal efficiency of in-memory computing. We demonstrate the efficacy of this approach
by addressing the problem of solving systems of linear equations and present experimental results of solving
accurately a system of 5,000 equations using 998,752 phase-change memory devices. Our studies illustrate that
a judicious interconnection of high-precision arithmetic and in-memory computing can be used to solve problems
at the core of today’s computing applications.
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MS 3.2.A CAB G 11 RECENT ADVANCES IN PARALLEL SPARSE DIRECT
SOLVERS

Chair: E. Ng

#72: symPACK: A new parallel sparse symmetric linear solver
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Esmond G. Ng
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mathias Jacquelin

In this talk, we will describe a new parallel solver, symPACK, for solving sparse symmetric linear systems using
Cholesky factorization on distributed-memory platforms. It differs from most of the existing solvers in that our
implementation is task based, and uses 1-sided communication and dynamic scheduling. We will discuss the
design of symPACK and provide preliminary results to demonstrate its performance.
#73: Efficient Parallel Implementation of Spectral Nested Dissection for Large-Scale Sparse Linear Sys-
tem
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yuta Inagawa
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yasunori Futamura, Akira Imakura, Tetsuya Sakurai

In this study, we develop an efficient implementation of fill-reducing ordering for sparse direct linear solvers.
Fill-reducing ordering is used to reduce the memory requirement and computational complexity in sparse direct
solvers. Libraries such as METIS and ParMETIS that perform the nested dissection ordering are widely used.
However, current available libraries are mainly optimized for CPU and are not necessarily optimized for GPU and
Intel Xeon Phi. Another approach is the spectral nested dissection that recursively bipartitions the graph using the
Fiedler vector (the eigenvector corresponding to the smallest non-zero eigenvalue) of the graph Laplacian. The
Fiedler vector is usually computed by a sparse eigenvalue solver such as LOBPCG whose computational cost is
dominated by the sparse matrix-vector multiplication (SpMV). Since many efforts for improving the performance of
SpMV on GPU and Intel Xeon Phi have been made, the spectral nested dissection possibly outperforms existing
libraries if we can adopt such efforts. In our study, we have implemented the spectral nested dissection for Intel
Xeon Phi and have developed an efficient sparse matrix-vector multiplication by focusing on properties of the
graph Laplacian. In this presentation, we show a performance comparison of our implementation of the spectral
nested dissection and ParMETIS.
#74: Supernodes ordering to enhance Block Low-Rank compression in sparse direct solvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mathieu Faverge
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this talk, we present new ordering heuristics to perform block low-rank clustering in supernodes issued from
the nested dissection. As kway partitioning within supernodes does not take into account interactions between
supernodes, there is room to improve compression rates. We combine kway partitioning with a reordering strategy
that aims at minimizing the number of off-diagonal blocks in the symbolic structure and show that both methods
are limited. In addition, we propose a selection of some non-compressible vertices to handle the corresponding
blocks in full-rank and reduce the burden on managing low-rank blocks with high ranks.
#75: Complexity and parallelism of the solution phase in sparse direct solvers
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gilles Moreau
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alfredo Buttari, Jean-Yves L’Excellent, Théo Mary

The cost of the solution phase of sparse direct solvers, traditionally considered to be small with respect to that of
the factorization phase, has become more important with the emergence of fast direct solvers based on low-rank
approximations, and is even critical in presence of many right-hand sides. It therefore has become necessary to
leverage the inherent differences of the solution phase compared to the factorization phase.
In this talk, we demonstrate that, because of its lower asymptotic complexity with respect to the factorization,
the solve phase exhibits some interesting complexity and performance properties. We identify two algorithmic
ingredients that bring a factor of acceleration that increases with the problem size and are thus critical to tackle
large scale problems: namely, tree parallelism, and the possible sparsity of the right-hand sides. We also explain
why these two ingredients are even more critical when used in conjunction with low-rank approximations such
as the BLR or H formats. We illustrate these theoretical properties with some numerical experiments using the
MUMPS solver on a set of large problems coming from a variety of real-life applications.

MS 3.2.B CAB G 61 PARALLEL-IN-TIME METHODS FOR HPC Chair: R. Krause
#76: Challenges in solving turbulent flows with a purely time-periodic solver
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Daniel Hupp
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dominik Obrist, Peter Arbenz

The continued increase in computational power is due to the availability of more processing units and not due to
faster processing units. This lead to an increasing interest in methods that not only prallelize the space dimension
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but also the time dimension. We have developed a solver for time-periodic Navier–Stokes problems. This is
done by assuming a time-periodic steady-state solution and applying periodic boundary conditions in time. The
resulting space-time problem is parallelized in space and time. The efficiency and good parallel scaling has been
demonstrated in previous work.
In this talk, we show the performance of the solver applied to a turbulent flow. The considered flow is a periodically
disturbed swept Hiemenz flow. This flow has been studied before, so we can localize the break down to turbulence
precisely. We will show different challenges that have to be overcome to make the time-periodic solver work
efficiently for turbulent flows.
#77: Multigrid Reduction in Time (MGRIT) for Eddy Current Problems
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stephanie Friedhoff
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sebastian Schöps

Maxwell’s equations are an essential tool in the numerical simulation of problems in electrical engineering. A
standard approach for the simulation of electrical machines is to neglect the displacement current in Maxwell’s
equations, yielding the so-called magnetoquasistatic approximation or, synonymously, the eddy current problem.
The computational complexity of classical solution algorithms based on a time-marching approach is high, par-
ticularly if long time periods have to be considered as, for example, in the case of simulating the start-up of an
electrical machine. One approach for reducing the simulation time is with parallel-in-time integration techniques.
In this talk, we consider Multigrid Reduction in Time (MGRIT) for the time-parallel solution of the eddy current
problem. In particular, we present numerical results for a 2D model problem of a conducting wire surrounded by
a pipe.
#78: Analysis of Overlap in Optimized Waveform Relaxation Methods for RLCG Transmission Line Type
Circuits
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pratik M. Kumbhar
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Martin J. Gander, Albert E. Ruehli

Among many applications of parallel computing, solving large systems of ordinary differential equations (ODEs)
which arise from large scale electronic circuits, or discretizations of partial differential equations (PDEs), form
an important part. A systematic approach for their parallel solution are Waveform Relaxtion (WR) techniques,
which were introduced in 1982 for circuit solver applications. These techniques are based on partitioning large
circuits into smaller sub-circuits, which are then solved separately over multiple time steps, and the overall so-
lution is obtained by an iteration between the sub-circuits. However, this technique can lead to non-uniform and
potentially slow convergence over large time windows. To overcome this issue, optimized waveform relaxation
techniques were introduced, which are based on optimizing a parameter. We show how this method improves the
convergence for RLCG transmission line type circuits. We introduce overlap between sub circuits and analyze its
effect on the convergence factor. For R=0, we find that these RLCG circuit equations represent discretizations of
the well known Maxwell equations. We relate these two models and give some asymptotic results.
#79: Parallel Solution of Time Dependent Problems using Non-Linear Multigrid Methods
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rolf Krause
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pietro Benedusi, Patrick Zulian, Carlo Garoni, Stefano Sera

We present a parallel and efficient multilevel solution strategy for solving non-linear time-dependent problems. We
consider in particular the mono-domain model, a non-linear reaction-diffusion equation arising from a problem in
electrophysiology: the electrical activation in the human heart. Different strategies for the space-time discretiza-
tion and solution of the mono-domain equation are discussed, which are based on domain decomposition and
multi-level methods. For the latter, we propose a semi-geo-metric multigrid method, for which the coarse level
approximation spaces are created using arbitrary hierarchies of non-nested meshes. Interpolation and restriction
in the multilevel context is then realized by means of a discrete L2-projection between the non-matching meshes.
This approach allows for creating the coarser levels of a multigrid hierarchy, even if only a single “fine” mesh is
available. Hence, multigrid hierarchies can be created for arbitrary geometries in any dimension. We discuss how
this approach can be applied to the monodomain equation discretised with space-time finite elements.
While we use continuous finite elements in space, for stability reasons we adopt discontinuous elements in time.
We discuss shortly the properties of this time discretization scheme.
We investigate how different block smoothers, coarsening strategies and ordering of the space-time variables
effect the overall convergence and robustness of the solver.
Furthermore, we comment on local time-stepping for space-time discretizations.
Finally, we investigate numerically the scalability and the convergence of our multilevel and domain decomposition
solution strategies.
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#80: Soft error sensitivity of large scale CFD applications
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Fatih Yetkin
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Şenol Pişkin

Compute capabilities of largest High-performance computing (HPC) systems have increased by at least 100
times in the last 10 years and keep increasing substantially every year. This increase is made possible mostly
by multi-core technology besides the increase in clock speed of CPUs. According to the literature, both are
the main reasons for the increase of the possibility of bit-flip(s). Bit-flip(s) are defined as unexpected changes
due to environmental situations on data during the calculation. Since there are systems with more than 100
thousand cores installed and available for processing simultaneously on these days, one can claim that the
resiliency against bit-flip(s) is one of the key issues in computational science. On the other hand, computational
simulation tools are always in need of more than available computational sources. This is the case for especially
complex flow problems. A wide variety of natural virtue are classified as flow originated forces and modeled for
predictions in many field: weather forecasting, aerodynamics, pharmaceutical design and biomedical engineering
which spans from diagnosis, prognosis and pre-surgical planning to patient specific cardiovascular circulatory
system and tumor treatment. There are many other diverse application areas, that can be described as flow
problem. Moreover, the topics are not limited by the current problem definition since they are further extended
with novel problem definitions. Computational fluid dynamics (CFD) is one of the most commonly used tool for
solving these types problems. In this study, we are analyzing the reaction of a CFD simulator against to artificially
generated transient soft errors at several phases of computation which are not impossible especially at peta/exa
scale computing systems. First, the soft errors are induced into the system after the assembling the final global
matrix of the simulator by manipulating predetermined bit flip operations. While the most time consuming part
of the overall simulation is the linear solver it is the matrix-vector product for iterative matrix solvers like PCG
or BiCG. Therefore, a random but non-zero element from the input vector of a randomly selected (in terms of
iteration) matrix-vector product is manipulated by a bit-flip operation during the iterative matrix solver algorithm.
Although the bit-flip manipulation is performed at randomly selected elements of the input vector of matrix-vector
operations occurred during the calculation, it is performed in a systematic order such that the all of the sign,
mantissa and exponential bits have been changed in order to test the sensitivity of the computations in bitwise
level. Behavior of the CFD simulator is observed after iterative matrix solver and physical flow solution iterations.
Soft error injection operation is repeated during the matrix vector multiplication operations on boundary conditions
of the physical flow problem which corresponds to the right side of the (b vector) global matrix assembly equation.
Results show that the iterative solvers of CFD matrices are highly sensitive to customized soft errors. Because of
a soft error, even the physical system is stable and reliable, CFD solver may assess that the system has a non-
physical solution. Hence, this study discussed an experimental framework to understand underlying conditions
of the soft error(s) leading to unrealistic solutions while acceptable solutions should have been computed. As we
present the very first preliminary results, further experiments and theoretical investigations are required for the
real behavior of the flow simulator.
#81: Some progresses in ULFM
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . George Bosilca
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

#82: Dynamic analysis of memory vulnerability
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sicong Zhuang
Co-authors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marc Casas, Luc Jaulmes

Memory reliability is measured as a fault rate, i.e. a probability over a given amount of time. The missing link
to know the fault probability of any data stored in memory is its storage duration. By analyzing memory access
patterns of an application, we can thus determine the vulnerability of data stored in memory, and thus the optimal
amount of redundancy to keep fault probabilities below an acceptable threshold at all times. This allows to
dynamically get fault probabilities for memory storage, and opens the door to runtime optimizations. The open
problem remains the right set of actuators to use for a runtime system, in order to adapt the strength of memory
protection. Some leads are to have different ECC strengths, either through an adaptable ECC scheme whose
amount of redundancy can be adjusted or through different chips with the option of migrating data under different
protection requirements.
#83: Using CRAFT library to introduce fault tolerance in PHIST iterative algorithms
Presenter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Faisal Shahzad
Co-authors: . . . . . . . . . . . . . . . . . . . . . . Jonas Thies, Moritz Kreutzer, Thomas Zeiser, Georg Hager, Gerhard Wellein

In this talk, we will present our fault tolerance approach for sparse linear algebra solvers. The talk consists of
two components. In the first part, we will present our fault tolerance solution in the form of CRAFT (Check-
point/Restart and Automatic Fault Tolerance) library, whereas its usage and benchmarks will be discussed in the
second part. The CRAFT library serves two fault tolerance functions: 1) Checkpoint/Restart (CR): This com-
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ponent is intended to reduce the programmer’s effort for incorporating the application-level CR functionality in
libraries and user-applications. It supports a range of default data-types (e.g., plain-old-data types (POD), 1D-
and 2D-POD arrays, MPI derived data-types, etc.), which can be used directly out-of-the-box with minimal code-
changes. For each of these POD data elements, the user can opt between various IO formats, e.g., MPI-IO,
Binary/ASCII-format. In addition to these default data-types, the user can extend the CRAFT library to check-
point any arbitrary data-types. As overhead reduction strategies, the CR-component has a built-in asynchronous
checkpointing mechanism for PFS-level checkpoints and also supports the usage of the SCR (Scalable Check-
point/Restart) library for node-level checkpoints. Its signal-based checkpointing feature can be used to initiate
checkpoints at any desired time from the terminal instead of setting a fixed frequency in the application. In ad-
dition, the CR-component supports multiple- and nested-checkpoints. Hereby, nested checkpoints (at different
nested loops/stages of an application) require careful attention as they can result in data inconsistency. For this
purpose, the concept of child-parent checkpoints is introduced. 2) Automatic Fault Tolerance (AFT): This compo-
nent of CRAFT makes use of ULFM-MPI to provide an easier interface for a dynamic recovery in case of process
failures. The ULFM-MPI is a prototype fault tolerance MPI implementation that provides necessary routines to
detect, acknowledge, and recover from process failures. However, the actual communication and application
recovery strategy is not a generic task and therefore is left up to the user to design and implement in the applica-
tion. CRAFT’s AFT component hides the details of these ULFM-MPI communication recovery functionalities by
providing a simpler interface which could be applied to a large variety of applications. It supports shrinking and
non-shrinking communication recoveries. In case of a shrinking recovery, the AFT functions offer all necessary
information about the failure to devise a recovery operation for failed processes. AFT also manages the resource
information about the application and job. Thereby the user can allocate reserve nodes which could be used
for recovery processes in case of a non-shrinking recovery. Although both parts of CRAFT complement each
other, they can still be used independently. In the second part of the talk, we will discuss the usage of CRAFT to
introduce fault tolerance in the PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) library algorithms. The
PHIST library provides implementation of and interfaces to block iterative solvers for sparse linear and eigenvalue
problems and supports multiple backends, e.g., Trilinos, PETSc, GHOST, etc. We will present how we used and
extended the CRAFT library to support PHIST data-types that are necessary for checkpointing. We will then
show the usage of CRAFT to introduce fault tolerance in PHIST-based Lanczos and Jacobi-Davidson algorithms.
Using these implementations we first analyze the overheads involved by CRAFT’s checkpoint/restart mechanism
and its optimizations. Secondly we also investigate different overhead components for dynamic process recovery
mechanism in the application.
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